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Abstract

We present a novel approach to video segmentation

which won the 4th place in DAVIS challenge 2017. The

method has two main components: in the first part we ex-

tract video object proposals from each frame. We develop

a new algorithm based on one-shot video segmentation

(OSVOS) algorithm to generate sequence-specific propos-

als that match to the human-annotated proposals in the first

frame. This set is populated by the proposals from fully con-

volutional instance-aware image segmentation algorithm

(FCIS). Then, we use the segment proposal tracking (SPT)

algorithm to track object proposals in time and generate

the spatio-temporal video object proposals. This approach

learns video segments by bootstrapping them from tempo-

rally consistent object proposals, which can start from any

frame. We extend this approach with a semi-Markov mo-

tion model to provide appearance motion multi-target in-

ference, backtracking a segment started from frame T to the

1st frame, and a ”re-tracking” capability that learns a bet-

ter object appearance model after inference has been done.

With a dense CRF refinement method, this model achieved

61.5% overall accuracy in DAVIS challenge 2017.

1. Introduction

Our GaTech-Oregon State team reaches 61.5% overall

mean accuracy in the DAVIS2017 challenge. Our pipeline

consists of 3 parts: 1) Proposal Generation 2) SPT Track-

ing of the Proposals 3) Spatial Refinement. Separating pro-

posal extraction from tracking allows us to use different al-

gorithms to generate set of proposals that each has a high

recall on part of the DAVIS dataset. For each sequence

we first extract segment proposals using two approaches, a

novel approach extending OSVOS [1] with LucidDream [3]

augmentation method to generate proposals that match the

human-annotated first frame segment in the video, and run-

ning the FCIS [6] instance segmentation algorithm to gen-

erate proposals for known semantic classes. These pro-

posals are treated as segment proposals in each image, and

then a novel enhanced version of the multi-segment track-

ing and object discovery algorithm SPT [5, 10] is used for

tracking the objects and selecting which ones to match to

which object annotation in the 1st frame. This version of

SPT finds objects that start from any frame and lasts for

any duration (a minimal 7 frames is required in the final

submission), learns a long-term appearance model of them

based on Color-SIFT, and also handles partial and complete

occlusions and finds objects that re-enter the scene. After

SPT, all the found object tracks are backtracked to the 1st

frame and matched with the ground truth annotation in the

1st frame. After the matching, SPT is used again to learn a

long-term appearance model of the consolidated tracks that

match the ground truth, which improved performance. Fi-

nally, a fully-connected CRF for spatial refinement is per-

formed with unaries coming from SPT. There are a number

of novelties in the approach:

• A novel approach extending OSVOS and LucidDream

in generating object proposals that match a ground

truth object.

• Incorporating a semi-Markov pixel-level motion

model in SPT-Occlusion.

• Backtracking all the SPT segment tracks to the 1st

frame and re-tracking them on the whole sequence.

• Fully-connected CRF on SPT unaries.

We review each part of the pipeline in the next sections.

2. Object Proposal Generation

We used a modified version of OSVOS [1] to generate

sequence specific proposals and FCIS [6] to generate pro-
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posals from seen semantic classes. We evaluate the im-

portance of each algorithm by reporting per-frame Jaccard

(IoU) measure on the validation set. Since there are many

proposals for each object, we choose the proposal that max-

imize per-frame Jaccard region similarity measure [8].

2.1. Sequence-Specific Proposals

We use one-shot video segmentation method [1] to gen-

erate sequence specific proposals. Here we discuss all the

modifications we do to the original algorithm to generate

proposals for our algorithm. Note that, we use the pub-

licly available code1 for OSVOS algorithm. Our method

has three parts: offline training in which we train the par-

ent network, the online training/testing which generates one

proposal per frame per instance, and the last combinatorial

step which generates multiple hypothesis by exploring the

combinatorial space of connected components.

Offline Training: The parent model is trained on the

DAVIS2017 training dataset with the same parameter set as

suggested in the paper. For a specific sequence, let It and

Mit be the image and the corresponding binary mask for

instance i in time t. At each iteration we pick a random

instance from the dataset and do a gradient decent update.

We use a modified version of balanced loss function in our

model:

L = α
X

log p+ + β
X

log (1− p−) (1)

where α = |Mit|−/|Mit| and β =
min(|Mit|+/|Mit|, 0.1). Setting the minimum value

of 0.1 is specially crucial in the online-training step for

getting acceptable performance on the small objects (see

Figure 1).

Online training/testing To generate proposals for each

instance j in the test set, we fine-tune the parent network

on the first frame image/mask (I0,Mj0) and test the net-

work on the rest of the frames which gives us one proposal

per frame per object. To increase the generalization perfor-

mance of the network we augment the training set (I0,Mj0)
using the method in [3]. Even with augmenting the data,

OSVOS proposals classifies parts of different similar in-

stances as foreground (Figure 2 first column). In the worst

case scenarios, the predictions drifts gradually from one in-

stance to another instance in the scene. More importantly,

this smooth drifting can tricks our segment tracking algo-

rithm which allows smooth temporal changes in the propos-

als’ appearances. To alleviate this problem we use a sim-

ple and effective combinatorial grouping algorithm to gen-

erate many proposals from each prediction. This method

increases the Jaccard performance by 3%.

Combinatorial Grouping Given the binary prediction

mask M̂jt, we first find the spatially connected components

1http://www.vision.ee.ethz.ch/˜cvlsegmentation/

osvos/

in the mask with the area > 20 pixels. Then we generate

all the possible combinations of the remaining CCs (sorted

from the one with fewer number of CCs and highest area).

Then, we reject any combination in which the distance be-

tween two CCs is more than 50 pixels. See Figure 2 for

the qualitative performance of this algorithm. The overall

accuracy for the generated proposals is around 67% on the

validation set.

2.2. Semantic Proposals

Recently, instance-aware image segmentation algo-

rithms [6, 2, 9] have showed exceptional performance in

segmenting objects from known semantic classes. To cover

these semantic classes better, we enriched the set of pro-

posals by the proposals generated from FCIS [6] algorithm.

We use the publicly available FCIS implementation 2. Since

our proposals are class agnostic, we only use the mask pre-

dictions and discard the semantic labels. To maximize the

proposal recall we accept proposals with the confidence pre-

diction higher than 0.1. We realize that decreasing the con-

fidence threshold from 0.5 to 0.1 helps to generalize to new

objects and increases the IoU by 5%. FCIS proposal alone

shows 72% performance. Combined with sequence-specific

proposals we got 78% performance. We also tried using

SharpMask [9] and COB [7] proposals but got inferior per-

formance compared to FCIS method.

3. SPT Tracking of the Proposals

Our tracking algorithm is unique in that it does not

specifically learn from the ground truth annotation in the

first frame. Instead, it is still mostly a general unsuper-

vised video segmentation algorithm that is only tested on

the ground truth annotation in the first frame and use that

to help reduce the number of tracks to be refined. Hence, it

does not depend on precise annotation in the first frame, nor

does it depend on the ground truth object must be present in

the first frame, etc. Such flexibility could turn out to be a

benefit in real-life scenarios.

We used a version of segment proposal tracking (SPT)

algorithm[5] similar to the one in [10], with the following

modifications:

• Removed the backtracking in [10] to every 5-th frame.

• Added a backtracking towards the 1-st frame after

track consolidation.

• Selection of tracks that correspond to the ground truth

objects.

• Refined inference with a pixel-level semi-Markov mo-

tion model during inference.

2https://github.com/msracver/FCIS
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Figure 1. Effect of the Loss Function While the original loss which is used in OSVOS algorithm does not converge after 2000 iterations

for the tiny object in the monkeys-trees sequence (first row), the augmented loss in Equation 1 converges after 500 iterations (second

row). Columns show the prediction after different number of iterations.

Figure 2. Combinatorial Grouping First column shows OSVOS prediction. Second column shows the best proposal generated from

OSVOS prediction. Other columns show samples from generated proposals. The grouping algorithm increases recall by taking into

account the prior on the continuity of the parts, the maximum distance between each two parts, and the area of each part.

• Added re-tracking after multi-object inference.

These are discussed in detail in the following paragraphs.

Remove backtracking to every 5-th frame SPT de-

pends on recursive least squares on many proposals to com-

pute regression models based on appearance. In SPT, re-

gressions against multiple targets from the same set of pro-

posals are sped-up with least square objects (LSOs), which

encapsulate the sample covariance matrix as well as the

products from inputs and the targets. Regression can be di-

rectly performed from LSOs without any additional infor-

mation [5, 10]. In [10], it was proposed to merge several

LSOs together in order to improve computational speed.

During the challenge, it was discovered that due to the

proposal weighting mechanisms in the code of SPT, such

merging would make regression scores (predicted overlaps)

learnt from different proposals incomparable, hence we re-

moved it and instead directly ran each LSO to the end of the

sequence, as in [5].

Backtracking towards the 1-st frame In the DAVIS

challenge, the ground truth was presented in the 1-st frame.

However in many cases, the 1-st frame is not very easy

to track and SPT picks up segments from latter frames

which did not include the 1-st frame. SPT would result

in many different tracks starting and ending at different

frames, which are consolidated by only retaining tracks that

exceed a certain length (7 frames in the DAVIS challenge).

3



After consolidation, for all the tracks that start later than

the 1-st frame, we ran the SPT algorithm in reverse order

to backtrack to the 1-st frame. The LSOs in those cases

are initialized to be the final LSOs in the original forward-

tracking SPT, then updated by including all the proposals in

all the intermediate frames as training examples in the same

manner as the original SPT [5]. The only difference is that

no new tracks are created or removed during this process.

Selection of tracks that correspond to the ground

truth objects For each tracked segment track, SPT will

generate an appearance model that predicts overlaps from

each object to this track. We use the predicted overlap on

the ground truth object in the first frame as the score of the

track w.r.t. the ground truth. Hence, there might be multi-

ple tracks that correspond to the same ground truth object.

This is resolved in the spatial refinement step. We thresh-

old to only retain tracks that have predicted overlaps at least

70% of the maximal predicted overlap of each ground truth

objects (e.g., if 3 tracks predicted the same ground truth ob-

ject to have overlap of 0.7, 0.63 and 0.44, the third one is

not selected). This threshold is fairly arbitrary and may not

be required.

Refined Inference with a pixel-level semi-Markov mo-

tion model It is not possible to incorporate a strong motion

model in SPT due to the algorithm simultaneously track-

ing thousands of objects. However, once we consolidated

to a few tracks that correspond to each ground truth object,

a stronger motion model can be used to adjust the score

of each segment. In this work, we utilize a semi-Markov

motion model with constant velocity. The motion model is

defined as follows:

Mk(pi) =

P10

j=1
wjSk−j,j(pi)

P
pi

P10

j=1
wjSk−j,j(pi)

Sk−j,j = Gσ ∗ Tvk−j
(Sk−j,j−1)

Sk−j,0 = Sk−j

vk = 0.7 ∗ vk−1 + 0.3(c(Sk)− c(Sk−1)) (2)

where Sk is the segment of the track at frame k and Sk,j is

the estimated location of Sk after j frames of motion. Tvk

denote a translation operator with vk being the amount of

translation (velocity), Gσ is a Gaussian blur with parameter

σ. In each frame, Sk,j is updated by applying the velocity

vector vk to the segment mask first, and then applying a

Gaussian blur with parameter σ. The velocity vector is a 2-

dimensional vector computed by the difference between the

centroid of segments Sk and Sk−1, denoted as c(Sk) and

c(Sk−1). The velocity is updated with a momentum factor

of 0.7, which is not applied in the first 5 frames.

This motion model takes into account the motion of the

object in the past 10 frames, with further ago frames be-

ing blurred more and having smaller weights. This is to

account for the fact that the tracking may be noisy and in

some frames the results may be completely wrong. Past

frames are always moved with a linear motion model vk−j

which is not updated. Mk(pi) is normalized to a distribu-

tion.

After computing Mk(pi), the motion score of each pro-

posal in frame k is computed as the average log-likelihood

of all the pixels in the segment Sk:

m(Sk) =

P
pi∈Sk

log(Mk(pi))

|Sk|
(3)

where |Sk| denotes the number of pixels in Sk.

Then, m(Sk) is considered in additon to ow(Sk), the

predicted overlap of Sk from the appearance model w,

and the segment proposal that maximizes the final score

ow(Sk)+αmm(Sk) is selected as the segment representing

the track with appearance model w. This is used instead of

the original SPT model where the segment that maximizes

ow(Sk) is selected as representing the track.

Re-tracking Because the motion model changes the seg-

ments that are selected in tracking, the appearance model

would no longer be as accurate as before. Therefore, it

makes sense to re-train the appearance model with the im-

proved motion scores in mind. This is implemented in the

system. During the re-tracking step, the SPT tracker utilizes

the motion model defined in the previous subsection and re-

train segment track appearance models w from scratch. In

this round, the chosen segments for the track and their cor-

responding appearance scores are stored. At each frame, the

tracker determines which segment proposal to be chosen as

the ground truth based on the predicted overlap plus the mo-

tion score. Then, the score of the highest-scoring proposal

is compared against the stored scores from last round, plus

a new motion score computed by the current segment track.

If a segment proposal has a higher score than the stored seg-

ment from last round, then such a proposal is chosen as the

segment for the track, otherwise, the stored segment is cho-

sen as the segment for the track. Such procedure is ran until

the end of the sequence. In certain sequences, this proce-

dure significantly improves the appearance model and led

to an improved tracking performance.

4. Spatial Refinement

As we mentioned earlier, the SPT tracking algorithm

provides pixel-level confidence map for each instance in the

scene. We use this values as the unary potential in a fully

connected CRF [4] to enhance the predicted segments. We

use the same binary potentials and optimization method as

described in the paper.
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5. Experiments

Quantitative results on DAVIS2017 dataset are available
in the leaderboard3 under name ”Haamo”. We include some
qualitative results on the challenging sequences in Figure 3.
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Figure 3. Qualitative Results Qualitative results from challenging sequences in test-challenge set. Images are sample every ≈ 20 frames.
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