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Abstract

Convolutional networks reach top quality in pixel-level

object tracking but require a large amount of training data

(1k⇠10k) to deliver such results. We propose a new train-

ing strategy which achieves state-of-the-art results across

three evaluation datasets while using 20⇥⇠100⇥ less an-

notated data than competing methods. Our approach is

suitable for both for single and multiple object tracking.

Instead of using large training sets hoping to generalize

across domains, we generate in-domain training data using

the provided annotation on the first frame of each video to

synthesize (“lucid dream”1) plausible future video frames.

In-domain per-video training data allows us to train high

quality appearance- and motion-based models, as well as

tune the post-processing stage. This approach allows to

reach competitive results even when training from only

a single annotated frame, without ImageNet pre-training.

Our results indicate that using a larger training set is not

automatically better, and that for the tracking task a smal-

ler training set that is closer to the target domain is more

effective. This changes the mindset regarding how many

training samples and general “objectness” knowledge are

required for the object tracking task.

1. Introduction

In the last years the field of object tracking in videos has

transitioned from bounding box [5] to pixel-level tracking

[11, 17, 15]. Given a first frame labelled with the object

masks, one aims to find the corresponding object pixels in

future frames. Tracking objects at the pixel level enables a

finer understanding of videos and is helpful for tasks such

as video editing, rotoscoping, and summarisation.

Top performing results are currently obtained using con-

volutional networks (convnets) [8, 1, 9, 5]. Like most deep

learning techniques, convnets for pixel-level object tracking

benefit from large amounts of training data. Current state-

of-the-art methods rely, for instance, on pixel accurate fore-

ground/background annotations of ⇠2k video frames [8, 1]

or ⇠10k images [9]. Labelling videos at the pixel level is

a laborious task (compared e.g. to drawing bounding boxes

for detection), and creating a large training set requires sig-

1In a lucid dream the sleeper is aware that he or she is dreaming and is

sometimes able to control the course of the dream.

Figure 1: Starting from scarce annotations we synthesize in-

domain data to train a specialized pixel-level object tracker.

nificant annotation effort.

In this work we aim to reduce the necessity for such large

volumes of training data. It is traditionally assumed that

convnets requires large training sets to perform best. We

show that for video object tracking having a larger training

set is not automatically better and that improved results can

be obtained by using 20⇥⇠ 100⇥ less training data than

previous approaches [1, 9]. The main insight of our work is

that for pixel-level object tracking using few training frames

(1⇠ 100) in the target domain is more useful than using

large training volumes across domains (1k⇠10k).

To ensure a sufficient amount of training data close to the

target domain, we develop a new technique for synthesizing

training data tailored for the object tracking scenario. We

call this data generation strategy “lucid dreaming”, where

the first frame and its annotation mask are used to generate

plausible future video frames. The goal is to produce a large

training set of reasonably realistic images which capture the

expected appearance variations in future video frames, and

thus is, by design, close to the target domain.

Our approach is suitable for both for single and multiple

object tracking. Enabled by the proposed data generation

strategy and the efficient use of optical flow, we are able

to achieve high quality results while using only ⇠ 100
individual annotated training frames. Moreover, in the

extreme case with only a single annotated frame (zero

pre-training), we still obtain competitive tracking results.

2. Related work

Pixel-level tracking. In this paper we focus on generating

a foreground versus background pixel-wise object labelling
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Figure 2: Data flow examples. It, Ft, Mt−1 are the inputs,

Mt is the resulting output.

for video starting from a first manually annotated frame.

Multiple strategies have been proposed to solve this task.

Mask propagation: Appearance similarity and motion

smoothness across time is used to propagate the first frame

annotation across the video [12, 21].

Video saliency: These methods extract the main fore-

ground object pixel-level space-time tube [20, 7].

Convnets: Recently convnets have been proposed for

pixel-level tracking. [1] trains a generic object saliency net-

work, and fine-tunes it per-video to make the output sens-

itive to the specific object instance being tracked. [9] uses

a similar strategy, but also feeds the mask from the previ-

ous frame as guidance for the saliency network. Finally [8]

mixes convnets with ideas of bilateral filtering.

Our network architecture is similar to [1, 9]. However,

we use a different strategy for training: [1, 8] rely on video

training frames and [9] uses an external saliency dataset,

while our approach focuses on using the first frame annota-

tions provided with each targeted video benchmark without

relying on external annotations.

Synthetic data. Like in our approach, previous works have

also explored synthesizing training data. Synthetic render-

ings [13] and video games [18] have shown promise, but

require 3d models. Compositing real images provides more

realistic results, e.g. for text localization [4]. The closest

work to ours is [14], which also generates video-specific

training data using the first frame annotations. They use hu-

man skeleton annotations to improve pose estimation, while

we employ mask annotations to improve object tracking.

3. LucidTracker

3.1. Architecture

Approach. We model the pixel-level object tracking prob-

lem as a mask refinement task (mask: binary foreground/

background labelling of the image) based on appearance

(a) Two stream architecture, where image It and optical flow informa-

tion kFtk are used to update mask Mt−1 into Mt. See equation 1.

(b) One stream architecture, where 5 input channels: image It, optical

flow information kFtk and mask Mt−1 are used to estimate mask Mt.

Figure 3: Overview of the proposed one stream and two

stream architectures. See §3.1.

and motion cues. From frame t − 1 to frame t the es-

timated mask Mt−1 is propagated to frame t, and the new

mask Mt is computed as a function of the previous mask,

the new image It, and the optical flow Ft, i.e. Mt =
f (It, Ft, Mt−1). Since objects have a tendency to move

smoothly through space in time, there are little changes

from frame to frame and mask Mt−1 can be seen as a rough

estimate of Mt. Thus we require our trained convnet to

learn to refine rough masks into accurate masks. Fusing

the complementary image It and motion Ft cues exploits

the information inherent to video and enables the model to

segment well both static and moving objects.

Note that this approach is incremental, does a single for-

ward pass over the video, and keeps no explicit model of the

object appearance at frame t. We also consider adapting the

model f per video, using the annotated first frame I0, M0.

First frame. In the video object tracking task the mask for

the first frame M0 is given. This is the standard protocol of

the benchmarks considered in Section 5.

RGB image I. Typically a semantic labeller generates

pixel-wise labels based on the input image (e.g. M =
g (I)). We use an augmented semantic labeller with an in-

put layer modified to accept 4 channels (RGB + previous

mask) so as to generate outputs based on the previous mask

estimate, e.g. Mt = fI (It, Mt−1). Our approach is gen-

eral and can leverage any existing semantic labelling archi-

tecture. We select the DeepLabv2 architecture with VGG

base network [2], which is comparable to [8, 1, 9]; Fusion-

Seg [7] uses ResNet.

Optical flow F . We use flow in two complementary ways.

First, to obtain a better estimate of Mt we warp Mt−1 us-

ing the flow Ft: Mt = fI (It, w(Mt−1, F t)). Second, we

use flow as a direct source of information about the mask

Mt. As can be seen in Figure 2, when the object is moving



relative to background, the flow magnitude kFtk provides

a very reasonable estimate of the mask Mt. We thus con-

sider using convnet specifically for mask estimation from

flow: Mt = fF (Ft, w(Mt−1, F t)), and merge it with the

image-only version by naive averaging

Mt = 0.5 · fI (It, . . .) + 0.5 · fF (Ft, . . .) . (1)

We use the state-of-the-art optical flow method

FlowNet2.0 [6], which itself is a convnet that computes

Ft = h (It−1, It).
In our experiments fI and fF are trained independ-

ently. Our two stream architecture is illustrated in Figure

3a. We also explored expanding our network to accept 5

input channels (RGB + previous mask + flow magnitude)

in one stream: Mt = fI+F (It, Ft, w(Mt−1, F t)), but

did not observe much difference in the performance com-

pared to naive averaging. Our one stream architecture is

illustrated in Figure 3b.

Multiple objects. The proposed framework can be exten-

ded to multiple object tracking. Instead of one additional

channel for the previous frame mask we provide masks

for each object in a separate channel, expanding the net-

work to accept 3 + N input channels (RGB + N object

masks): Mt = fI
(

It, w(M
1
t−1, F t), ..., w(M

N
t−1, F t)

)

,

where N is the number of objects.

For multiple object tracking task we employ

one-stream architecture for the experiments and

also explore using optical flow F and semantic

segmentation S as additional input channels:

Mt=fI+F+S

(

It, Ft, St, w(M
1
t−1, F t), ..., w(M

N
t−1, F t)

)

.

This allows to leverage the appearance model with semantic

priors and motion information.

We use the state-of-the-art semantic segmentation

method PSPNet [23], which itself is a convnet that com-

putes St = h (It).
We additionally experiment with ensembles of

different variants, that allows to make the system

more robust to the challenges inherent in videos.

For our main results for multiple object track-

ing task we consider the ensemble of four models:

Mt=0.25 · fI+F+S +0.25 · fI+F +0.25 · fI+S +0.25 · fI ,

where we merge the outputs of the models by naive

averaging. See Section 6 for more details.

Post-processing. As a final stage of our pipeline, we refine

the generated mask Mt using DenseCRF [10] per frame.

This adjusts small image details that the network might not

have captured. It is known by practitioners that DenseCRF

is quite sensitive to its parameters and can easily worsen

results. We will use our lucid dreams to handle per-dataset

CRF-tuning too, see Section 3.2.

We refer to our full system as LucidTracker, and as

LucidTracker
− when no post-processing is used.

3.2. Training modalities

Multiple modalities are available to train a tracker.

Training-free approaches (e.g. BVS [12]) are fully hand-

crafted systems with hand-tuned parameters, and thus do

not require training data. They can be used as-is over differ-

ent datasets. Supervised methods can also be trained to gen-

erate a dataset-agnostic model that can be applied over dif-

ferent datasets. Instead of using a fixed model for all cases,

it is also possible to obtain specialized per-dataset models,

either via self-supervision [22] or by using the first frame

annotation of each video in the dataset as training/tuning

set. Finally, inspired by traditional tracking techniques, we

also consider adapting the model weights to the specific

video at hand, thus obtaining per-video models. Section 5

reports results over these four training modalities (training-

free, dataset-agnostic, per-dataset, and per-video).

Our LucidTracker obtains best results when first pre-

trained on ImageNet, then trained per-dataset using all data

from first frame annotations together, and finally fine-tuned

per-video for each evaluated sequence.

Training details. Models using pre-training are initialized

with weights trained for image classification on ImageNet

[19]. We then train per-dataset for 40k iterations. Mod-

els without ImageNet pre-training are initialized using the

“Xavier” strategy [3]. The per-dataset training needs to be

longer, using 100k iterations. For per-video fine-tuning 2k

iterations are used for fI .

4. Lucid data dreaming

To train the function f one would think of using ground

truth data for Mt−1 and Mt (like [1]), however such data is

expensive to annotate. [1] thus trains on a set of 30 videos

(⇠ 2k frames) and requires the model to transfer across

multiple tests sets. [9] side-steps the need for consecutive

frames by generating synthetic masks Mt−1 from a large

saliency dataset of ⇠10k images with their corresponding

mask Mt. We propose a new data generation strategy to

reach better results using only ⇠100 training frames.

Ideally training data should be as similar as possible to

the test data, even subtle differences may affect quality. To

ensure our training data is in-domain, we propose to gener-

ate it by synthesizing samples from the provided annotated

first frame in each target video. This is akin to “lucid dream-

ing” as we intentionally “dream” the desired data, by creat-

ing images that are plausible hypothetical future frames of

the video. The outcome of this process is a large set (2.5k
images) of frame pairs in the target domain with known op-

tical flow and mask annotations, see Figure 4.

Synthesis process. The target domain for a tracker is the

set of future frames of the given video. Traditional data

augmentation via small image perturbation is insufficient



(a) Original image I0 and mask annotation M0

(b) Generated image Iτ−1

(c) Generated image Iτ

(d) Generated flow magnitude kFτk

Figure 4: Lucid data dreaming examples.

to cover the expect variations across time, thus a task spe-

cific strategy is needed. Across the video the tracked ob-

ject might change in illumination, deform, translate, be oc-

cluded, show different point of views, and evolve on top

of a dynamic background. All of these aspects need to

be captured when synthesizing future frames. We achieve

this by cutting-out the foreground object, in-painting the

background, perturbing both foreground and background,

and finally recomposing the scene. This process is applied

twice with randomly sampled transform parameters, result-

ing in a pair of frames (Iτ−1, Iτ ) with ground-truth pixel-

level mask annotations (Mτ−1, Mτ ), optical flow Fτ , and

occlusion regions, as the undergoing transformations are

known. The object position in Iτ is uniformly sampled,

but the changes between Iτ−1, Iτ are kept small to mimic

the usual evolution between consecutive frames.

In more details, starting from an annotated image:

1. Illumination changes: we globally modify the image by

randomly altering saturation S and value V (from HSV col-

our space) via x0 = a·xb+c, where a 2 1±0.05, b 2 1±0.3,

and c 2 ±0.07.

2. Fg/Bg split: the foreground object is removed from the

image I0 and a background image is created by inpainting

the cut-out area.

3. Object motion: we simulate motion and shape deform-

ations by applying global translation as well as affine and

non-rigid deformations to the foreground object. For Iτ−1

the object is placed at any location within the image with a

uniform distribution, and in Iτ with a translation of ±10%
of the object size relative to τ − 1. In both frames we apply

random rotation ±30◦, scaling ±15% and thin-plate splines

deformations of ±10% of the object size.

4. Camera motion: We additionally transform the back-

ground using affine deformations to simulate camera view

changes. We apply here random translation, rotation, and

Method
# training Flow Dataset, mIoU

images F DAVIS YoutbObjs SegTrckv2

MP-Net [20] ~22.5k 69.7 - -

FusionSeg [7] ~95k 71.5 67.9 -

BVS [12] 0 66.5 59.7 58.4

ObjFlow [21] 0 71.1 70.1 67.5

VPN [8] ~2.3k 75.0 - -

OSVOS [1] ~2.3k 79.8 72.5 65.4

MaskTrack [9] ~11k 80.3 72.6 70.3

LucidTracker 24~126 84.8 76.2 77.6

Table 1: Results across three datasets. See §5.2.

scaling within the same ranges as for the foreground object.

5. Fg/Bg merge: finally (Iτ−1, Iτ ) are composed by

blending the perturbed foreground with the perturbed back-

ground using Poisson matting. Using the known transform-

ation parameters we also synthesize ground-truth pixel-

level mask annotations (Mτ−1, Mτ ) and optical flow Fτ .

Figure 4 shows example results. Albeit our approach does

not capture appearance changes due to point of view, nor

shadows, we see that already this rough modelling is effect-

ive to train our tracking models.

The same data synthesis strategy can be employed for

multiple object tracking. Instead of manipulating one object

we handle multiple objects at the same time, applying dif-

ferent transformations to each of them. In addition we also

model partial and full occlusions between objects, mimick-

ing plausible interactions of objects in the future frames.

5. Single object tracking

We present here results for single object tracking task:

given a first frame labelled with the object mask, the goal is

to find the corresponding object pixels in future frames.

5.1. Experimental setup

We evaluate our method on three video object segment-

ation datasets: DAVIS [15], YouTubeObjects [17], and

SegTrackv2 [11]. These datasets provide diverse challenges

with a mix of HD and low-res web videos, single or mul-

tiple salient objects per video, videos with flocks of similar

looking instances, as well as the usual tracking challenges.

To measure the accuracy we use the mean intersection-

over-union overlap (mIoU) between the ground truth and

the predicted segmentation, averaged across all sequences.

5.2. Key results

Table 1 presents our main result and compares it to pre-

vious work. Our full system, LucidTracker, provides

the best tracking quality across three datasets while being

trained on each dataset using only one frame per video

(50 frames for DAVIS, 126 for YouTubeObjects, 24 for

SegTrackv2), which is 20⇥⇠100⇥ less than the top com-

peting methods. Ours is the first method to reach >

75 mIoU on all three datasets.
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Figure 5: LucidTracker results. Frames sampled along the video duration (e.g. 50%: video middle point).

Variant
ImgNet

pre-train.

per-dataset

training

per-video

fine-tun.

Dataset, mIoU

DAVIS YoutbObjs SegTrckv2

LucidTracker
−

83.7 76.2 76.8

(no ImgNet) 82.0 74.3 71.2

No per-video

tuning

82.7 72.3 71.9

78.4 69.7 68.2

Only per-

-video tuning

79.4 - 70.4

80.5 - 66.8

Table 2: Ablation study. Even with one frame annotation

for only per-video tuning we obtain good results. See §5.3.

Compared to flow propagation methods such as BVS,

ObjFlow, we obtain better results as we build per-video a

stronger appearance model of the tracked object (embod-

ied in the fine-tuned model). Compared to convnet learning

methods such as VPN, OSVOS, MaskTrack, we require sig-

nificantly less training data, yet obtain better results.

Conclusion. We show that less training data does not ne-

cessarily lead to poorer results and report the best known

results for this task while using 24⇠126 training frames.

5.3. Ablation study

Table 2 compares the effect of different ingredients in the

LucidTracker
− training. Results are obtained using RGB

and flow, with warping, no CRF; Mt=f (It, w(Mt−1,Ft)).

We see that ImageNet pre-training does provide 2 ⇠
5 percent point improvement (e.g. 82.0 ! 83.7 mIoU

on DAVIS). Per-video fine-tuning (after doing per-dataset

training) provides an additional 1 ⇠ 2 percent point gain

(e.g. 82.7!83.7 mIoU on DAVIS).

In the bottom row ("only per-video tuning"), the model

is trained per-video without ImageNet pre-training nor per-

dataset training, i.e. using a single annotated training

frame. Even with such minimal amount of training data,

we still obtain a surprisingly good performance (compare

80.5 on DAVIS to others in Table 1). This shows how ef-

fective is, by itself, the proposed training strategy based on

lucid dreaming of the data.

Conclusion. Both ImageNet pre-training and per-video

tuning of the models provide complementary gains over the

default per-dataset training. Per-video training by itself,

despite using a single annotated frame, provides already

much of the needed information for the tracking task.

Method
test-dev set

global mean

voigtlaender (5) 56.5

lalalafine123 (4) 57.4

wangzhe (3) 57.7

lixx (2) 66.1

LucidTracker (1) 66.6

(a) Results on test-dev set.

Method
test-challenge set

global mean

voigtlaender (5) 57.7

haamooon (4) 61.5

vantam299 (3) 63.8

LucidTracker (2) 67.8

lixx (1) 69.9

(b) Results on test-challenge set.

Table 3: DAVIS 2017 challenge results.

6. Multiple object tracking

We present here an empirical evaluation of LucidTracker

for multiple object tracking task: given a first frame labelled

with the masks of several object instances, one aims is to

find the corresponding masks of objects in future frames.

6.1. Experimental setup

For multiple object tracking we experiment on DAVIS

2017 [16]. This is a larger, more challenging dataset, where

the video sequences have multiple objects in the scene. We

evaluate our method on two test sets, the test-dev and test-

challenge sets, each consists of 30 new videos.

To measure the accuracy of multiple object tracking we

use the region (J) and boundary (F) measures [16]. As an

overall measure the average of the J and F measures over all

object instances is used.

6.2. Key results

Tables 3a and 3b presents the results of the 2017 DAVIS

Challenge on test-dev and test-challenge sets [16].

Our main results are obtained via an ensemble of four

different models. All models are initialized with weights

trained for image classification on ImageNet and then tuned

per-video. LucidTracker provides the best tracking qual-

ity on the test-dev set and shows competitive performance

on the test-challenge set. The full system is trained using

only one annotated frame per video, 30 frames overall.

Conclusion. We show that top results for multiple object

tracking can be achieved using only the available annotation

of the first frame for training.



Variant I F S ensemble CRF tuning

DAVIS 2017

test-dev

global mean mIoU mF

LucidTracker

(ensemble)

66.6 63.4 69.9

65.2 61.5 69.0

64.2 60.1 68.3

I + F + S 62.0 57.7 62.2

I + F 61.3 56.8 65.8

I + S 61.1 56.9 65.3

I 59.8 63.1 63.9

Table 4: Ablation study. DAVIS 2017, test-dev set.

6.3. Ablation study

In Table 4 we explore in more details how the different

ingredients contribute to our results.

We see that adding extra channels to the system, either

optical flow magnitude or semantic segmentation, or both

provides 1⇠2 percent point improvement.

Combining in ensemble four different models

(fI+F+S + fI+F + fI+S + fI ) enhances the res-

ults, bringing 3 percent point gain. CRF-tuning allows to

further improve the results (65.2!66.6 mIoU).

Conclusion. The results show that both flow and semantic

priors provide a complementary signal to RGB image only.

Despite its simplicity our ensemble strategy provides addi-

tional gain and leads to competitive results.

7. Conclusion

We have described a new convnet-based approach for

pixel-level object tracking in videos. In contrast to previ-

ous work, we show that top results for single and multiple

object tracking can be achieved without requiring external

training datasets (neither annotated images nor videos). Our

experiments indicate that it is not always beneficial to use

additional training data, synthesizing training samples close

to the test domain is more effective than adding more train-

ing samples from related domains.

Showing that training a convnet for object tracking can

be done with only few (⇠ 100) training samples changes the

mindset regarding how much general "objectness" know-

ledge is required to approach this problem [9, 7], and more

broadly how much training data is required to train large

convnets depending on the task at hand.

We hope these new results will fuel the ongoing evolu-

tion of convnet techniques for pixel-level object tracking.
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