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Abstract

This paper describes our method used for the 2017

DAVIS Challenge on Video Object Segmentation [26]. The

challenge’s task is to segment the pixels belonging to mul-

tiple objects in a video using the ground truth pixel masks,

which are given for the first frame. We build on our recently

proposed Online Adaptive Video Object Segmentation (On-

AVOS) [28] method which pretrains a convolutional neu-

ral network for objectness, fine-tunes it on the first frame,

and further updates the network online while processing

the video. OnAVOS selects confidently predicted foreground

pixels as positive training examples and pixels, which are

far away from the last assumed object position as negative

examples. While OnAVOS was designed to work with a sin-

gle object, we extend it to handle multiple objects by com-

bining the predictions of multiple single-object runs. We

introduce further extensions including upsampling layers

which increase the output resolution. We achieved the fifth

place out of 22 submissions to the competition.

1. Introduction

Video object segmentation (VOS) is a fundamental com-

puter vision task with important applications in video edit-

ing, robotics, and autonomous driving. The goal of VOS

is to segment the pixels of one or more objects in a video

using the ground truth pixel masks of the first frame. While

single-object and multi-object tracking on bounding box

level has received much attention in the computer vision

community, their variant on pixel level, i.e. VOS, has been

less well explored, mainly due to the lack of datasets of

sufficient size and quality. However, the recent intro-

duction of the DAVIS 2016 dataset [25] for single-object

VOS and the DAVIS 2017 dataset and competition [26]

for multi-object VOS together with the adoption of deep

learning techniques, led to a significant advancement in the

state of the art of VOS. The most successful methods are
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Figure 1: Overview of the proposed multi-object version

of OnAVOS [28]. For each object in the video, OnAVOS is

run once using the corresponding pixel mask for the first

frame (not shown). OnAVOS updates the network online

using the adaptation targets to improve the results. Positive

adaptation targets are shown in yellow and negative targets

are shown in blue. Finally, the single-object predictions are

merged to yield the multi-object segmentation. It can be

seen that the online adaptation significantly improves the

segmentation of the left person.

based on pretrained fully-convolutional neural networks,

which are fine-tuned on the first frame of the target video

[24, 5, 17, 28]. Most of these methods leave the network

parameters fixed after fine-tuning, which means that they

cannot deal well with large changes in appearance, e.g. aris-

ing from an altered viewpoint. This is in contrast to our re-
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cently introduced Online Adaptive Video Object Segmenta-

tion (OnAVOS) [28] method, which adapts to these changes

by updating the network online while processing the video,

leading to significant improvements on the DAVIS 2016

[25] and the YouTube-Objects [27, 13] datasets for single-

object VOS. See Fig. 1 for an overview of the online adap-

tation approach. In this work, we adopt OnAVOS and gen-

eralize it in a simple way to work with multiple objects. We

demonstrate its effectiveness for this task by achieving the

fifth place on the 2017 DAVIS challenge [26].

2. Related Work

Fully Convolutional Neural Networks for Semantic Seg-

mentation. Long et al. [20] introduced fully convolu-

tional neural networks (FCNs) for semantic segmentation

which replace the fully-connected layers of a pretrained

convolutional classification network by 1× 1 convolutions,

enabling the network to output dense predictions for se-

mantic segmentation instead of just one global class pre-

diction. Recently, Wu et al. [29] introduced a very wide

fully-convolutional ResNet [12] variant, which achieved

outstanding results for classification and semantic segmen-

tation. We adopt their network architecture and pretrained

weights for our experiments.

Video Object Segmentation with Convolutional Neural

Networks. Caelles et al. introduced the one-shot video

object segmentation (OSVOS) [5] approach, which pretrains

a convolutional neural network on ImageNet [7], then fine-

tunes it on the 30 training videos of DAVIS 2016, and finally

fine-tunes on the first frame of the target video. The result-

ing fine-tuned network is then applied on each frame of the

video individually. The MaskTrack method [24] pretrains a

convolutional neural network to propagate pixel masks from

one frame to the next while exploiting optical flow informa-

tion. They also fine-tune on the first frame. LucidTracker

[17] uses a similar approach to MaskTrack and introduces

an elaborate data augmentation method, which generates

a large number of training examples from the first frame.

Caelles et al. [4] incorporate the semantic information of an

instance segmentation method into their VOS pipeline. The

current best result on DAVIS 2016 is obtained by OnAVOS,

which extends the basic pipeline of OSVOS by an online

adaptation mechanism. OnAVOS is described in more detail

in Section 3.

Online Adaptation. Online adaptation methods are a

common element of many multi-object tracking methods

both for classical methods like online boosting [10] or the

Tracking-Learning-Detection framework [16], and in the

context of deep learning [21]. However, its use on pixel

level, i.e. for VOS, is less well explored and prior work

mainly focuses on classical methods like online updated

color or shape models [2, 1, 23] or random forests [8].

3. Online Adaptive Video Object Segmentation

The Online Adaptive Video Object Segmentation

(OnAVOS) [28] method extends OSVOS by an additional

objectness pretraining step and online updates. Fig. 2 illus-

trates its pipeline, which will be described in the following.

Base Network. The first step of OnAVOS is to pretrain

a convolutional neural network on large datasets like Ima-

geNet [7], Microsoft COCO [19], and PASCAL [9] for clas-

sification or semantic segmentation to learn a powerful rep-

resentation of objects. The resulting pretrained network is

called the base network.

Objectness Network. In the next step, the base network

is fine-tuned for pixel objectness [15, 14] on the PASCAL

dataset [9] with extended augmentations [11]. By treating

each of the 20 classes as foreground and all other pixels as

background, the network is trained for binary classification

and learns a general notion of which pixels belong to ob-

jects.

Domain Specific Objectness Network. In order to better

match the target domain, i.e. videos from DAVIS, the net-

work is then further fine-tuned for objectness on the DAVIS

2017 training sequences using all annotated objects as fore-

ground target and all other pixels as background. This

yields the domain specific objectness network.

Test Network. At test time, the domain specific objectness

network is fine-tuned on the first frame of the target video

in order to adapt to the specific appearance of the object of

interest. The resulting network is called the test network

and can either directly be applied to the rest of the video

as in OSVOS [5], or be further updated online as described

below.

Online Adapted Test Network. Algorithm 1 shows

the online update mechanism of OnAVOS for single-object

VOS. When processing a new video frame, positive and

negative pixels are selected as training examples. For pos-

itive examples, we select pixels, for which the network is

very confident that they belong to the foreground, i.e. pix-

els, for which the foreground probability provided by the

network is above a threshold α = 0.99. For negative ex-

amples, a different strategy is employed, since using strong

background predictions as negative examples destroys all

chances to adapt to changes in appearance. Instead, all pix-

els, which have a distance of more than d = 190 pixels

from the predicted foreground mask of the last frame are

selected as negative examples, and all remaining pixels are

assigned a “don’t care” label. To deal with noise, an ero-

sion operation can optionally be applied to the mask of the

last frame, before calculating the distance. See Fig. 1 for

an example of the selected adaptation targets. The obtained

pixel labels can then be used to fine-tune the network on

the current frame. However, naively doing so quickly leads
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Figure 2: The pipeline of OnAVOS [28] for a single object. Starting with pretrained weights, the network learns a general

notion of objectness on PASCAL (a). The network is then further pretrained for objectness on the DAVIS training set to

better match the target domain (b). At test time, the network is fine-tuned on the first frame of the target video to adapt to the

appearance of the object of interest (c). OnAVOS adapts the network online while processing the video, which makes it more

robust against appearance changes (d).

Algorithm 1 Online Adaptive Video Object Segmentation

(OnAVOS) for single object VOS

Input: Objectness network N , positive threshold α, distance threshold d,

total online steps nonline, current frame steps ncurr

1: Fine-tune N for 500 steps on frame(1)
2: lastmask ← ground truth(1)
3: for t = 2 . . . T do

4: lastmask ← erosion(lastmask)
5: dtransform ← distance transform(lastmask)
6: negatives ← dtransform > d

7: posteriors ← forward(N , frame(t))
8: positives ← (posteriors > α) \ negatives

9: if lastmask ̸= ∅ then

10: interleaved:

11: Fine-tune N for ncurr steps on frame(t)
using positives and negatives

12: Fine-tune N for nonline − ncurr steps on

frame(1) using ground truth(1)
13: end if

14: posteriors ← forward(N , frame(t))
15: lastmask ← (posteriors > 0.5) \ negatives

16: Output lastmask for frame t

17: end for

to drift. In order to prevent this drift, the first frame with

known ground-truth is mixed in as additional training ex-

ample during online updates, the weight of the loss of the

training examples from the current frame is reduced by a

factor β = 0.05, and a different learning rate is used. We

perform nonline = 15 update steps on each frame, from

which only ncurr = 3 use the current frame and all other

use the first frame.

In order to achieve robustness against occlusions and bad

segmentation results, we assume that the tracked object is

lost, when the predicted foreground mask is empty after the

erosion operation. In this case we do not apply online up-

dates on the current frame, until the foreground mask be-

comes non-empty again.

Network Architecture. The above described online adap-

tation method can be applied to any neural network, which

provides pixel-level predictions. Here we adopt the archi-

tecture used by OnAVOS, i.e. network A from Wu et al. [29]

which is a very wide convolutional neural network with 38

hidden layers with residual connections [12] and roughly

124 million parameters. It does not include transposed con-

volutions or skip connections, but uses dilated convolutions

[31] in the upper layers instead of strides or pooling in or-

der to retain a sufficiently high resolution. In all our ex-

periments, we use the bootstrapped cross-entropy loss [30]

which only considers a fraction (25% in our experiments) of

the hardest pixels, i.e. pixels with the highest cross-entropy

value. This loss function works well for unbalanced class

distributions, which are common for VOS. For optimization

we use Adam [18] and a batch size of only one image.

4. Extensions

Multiple Objects. The original formulation of OnAVOS

is designed for the single-object case. We extend it to the

multi-object case by running the single-object OnAVOS ver-

sion one time for each object in the target video and then

combining the predictions in a simple way. The fine-tuned

network used in the run for the kth object provides for each

pixel a probability pk, that the pixel belongs to the kth ob-

ject. If at least one of the objects is predicted with a prob-

ability of more than 0.5, then we select the object with the

highest probability for this pixel. Otherwise, we label the

pixel as background. We do not use a CRF for the multi-

object case. Our merging strategy performed better than the

simple version provided by the DAVIS 2017 development

kit, which merges single-object masks according to the ar-

bitrary order, in which they are given to the script. However,

we expect that a more elaborate strategy for handling mul-

tiple objects will provide further improvements.

Upsampling Layers. Due to strided convolutions, our net-

work provides only one output for each 8 × 8 pixel block.

3



We noticed that especially for small objects occurring in

DAVIS 2017, this can be a significant limitation. Hence,

we added three upsampling layers between the last convo-

lutional layer and the output layer with 200, 128, and 64

feature maps, respectively. The upsampling layers consist

of three components and are designed to avoid the checker-

board artifacts, which often arise when using transposed

convolutions [22]. The first component consists in enlarg-

ing the input feature map by a factor of two in both dimen-

sions using nearest neighbor interpolation. Afterwards, the

output of the last layer which has the same resolution is con-

catenated to the upsampled feature maps. Finally, a 3 × 3

convolution is performed. The combination of all three up-

sampling layers restores the original resolution resulting in

a prediction of each individual pixel.

Lucid Data Dreaming. We use a simplified variant of

the data augmentation mechanism from LucidTracker [17]

to generate additional training examples based on the first

video frame. To this end, we remove the object of interest

from the scene and fill the missing pixel using an inpaint-

ing technique [6]. Both the background and the object are

then independently and randomly transformed using rota-

tion, scaling and thin-plate spline deformations. Finally, the

transformed object is inserted at a random position in the

transformed background. For simplicity, the insertion was

done naively without a blending technique, and we did not

exploit that the pixel masks of multiple objects in the scene

are known. However, we expect that this could lead to fur-

ther improvements. We used the images generated this way

only for the fine-tuning on the first frame. We found it help-

ful to only use them for every second update step and use

the original first frame otherwise. Additionally, we reduced

the weight of the loss for the generated examples by a factor

of 10.

Ensembling. Since each run of OnAVOS involves a con-

siderable amount of randomness, which mainly arises from

data augmentations, we averaged the pixel-wise posterior

probabilities over four runs.

5. Experiments

Our experiments are based on the same implementa-

tion as OnAVOS [28]. We will make our implementation

available together with config files and pretrained mod-

els at https://www.vision.rwth-aachen.de/

page/OnAVOS. Most parts of our experimental setup are

identical to the setup used by OnAVOS [28]. We adopt net-

work A from Wu et al. [29], which was pretrained on Im-

ageNet [7], COCO [19] and PASCAL [9, 11], as the base

network. We conducted all experiments on the DAVIS 2017

dataset [26] which consists of a training set with 60 se-

quences, and a validation, a test-dev, and a test-challenge

set with 30 sequences each. The performance is measured

Subset validation test-dev test-challenge

Measure mIoU F mIoU F mIoU F

No adaptation 57.0 61.8 46.9 51.7 - -

OnAVOS 61.0 66.1 50.1 55.4 - -

+Upsampling 63.0 68.8 50.2 56.0 - -

+Lucid D. D. 63.1 69.4 52.5 58.8 - -

+Ensemble 64.5 71.2 53.4 59.6 54.8 60.5

Table 1: Results on the DAVIS 2017 dataset for multi-

object VOS. The entry OnAVOS refers to our multi-object

generalization of OnAVOS without further extensions. As

can be seen, the online adaptation of OnAVOS significantly

improves the results and each additional extension is useful.

The validation set is easier than the other sets as it contains

less objects per sequence.

using the mean intersection-over-union (mIoU) and the F-

measure which quantifies the quality of the contours [25].

To minimize the influence of random variations, we report

the average over at least two runs as results when no en-

sembling is used. We tuned the online adaptation hyperpa-

rameters on the validation set to better fit to the multi-object

scenario. During pretraining and fine-tuning, we used ran-

dom scaling, flipping and gamma data augmentations. At

test time, we averaged the predictions for each frame over

10 randomly sampled augmented versions of the input im-

age.

Table 1 presents the final results with all extensions on

three subsets of DAVIS 2017 and shows the effect of each

extension on the validation and test-dev sets. The winner of

the DAVIS 2017 challenge is selected based on the average

of the mIoU and the F-measure on the test-challenge set.

We achieve an mIoU of 54.8% and an F-measure of 60.5%,

which leads to an average of 57.7% with which we achieved

the fifth place in the challenge. The table further shows that

the online adaptation scheme of OnAVOS is highly effec-

tive also in the multi-object case. On the validation set, the

mIoU is improved from 57.0% to 61.0% and on the test-

dev set from 46.9% to 50.1%. Additionally, it can be seen

that each of the proposed extensions (see Section 4) leads

to improvements on its own and their combination leads to

an increase of over 3% on both subsets.

Difficulties and Failure Cases. The numbers in Table

1 (e.g. 54.8% mIoU on the test-challenge set) show that

the DAVIS 2017 dataset with multiple objects is signifi-

cantly more difficult than DAVIS 2016, on which OnAVOS

achieves an mIoU score of 85.7%. Hence, it is worthwhile

to study, what exactly causes the difficulties in DAVIS 2017.

Fig. 3 shows qualitative results on four selected sequences.

Subfigures (a) and (b) show the results for two sequences,

in which the objects of interest are of a different type, i.e. a

rider and a horse, or a person and a bike. In both sequences,

our method is able to produce high-quality results although

it has to handle multiple objects. This is in contrast to the se-
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quence of subfigure (c), where the objects of interest are all

of the same type, i.e. three persons, and hence have a similar

appearance. While the contours are still relatively accurate,

after some time our method confuses the persons; in the

last frame the right person is incorrectly labeled as another

person. In the context of tracking, this kind of error is well-

known and called identity-switch [3]. In the dogs-jump (d)

sequence, an identity switch occurs even for different typed

objects, i.e. a dog is labeled with the identity of a person.

Another difficulty in DAVIS 2017 is the presence of very

small or thin objects, which are hard to model by a fine-

tuned convolutional neural network. An example of this is

the left person in the lab-coat sequence (c), who is holding

two phones, which are hardly visible due to their small size

but still labeled as individual objects in the ground truth.

6. Conclusion

In this work, we extended OnAVOS to the multi-object

scenario and applied it to the DAVIS 2017 dataset. We

showed that also for multiple objects, the online adaptation

scheme is highly effective. Furthermore, we introduced up-

sampling layers, lucid data dreaming augmentations and en-

sembling as extensions to OnAVOS and showed their effec-

tiveness. While our results are promising and we achieved

the fifth place in the 2017 DAVIS challenge, we expect that

explicit incorporation of temporal context information and

handling of object identities will lead to further improve-

ments on top of OnAVOS in the future.
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