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Abstract

The problem of semi-supervised video object segmenta-
tion, in the context of the 2018 DAVIS Challenge [2], can
become extremely challenging when multiple instances co-
exist. While each instance may exhibit large scale and pose
variations, the problem is compounded when instances oc-
clude each other causing failures in tracking. In this study,
we formulate a deep recurrent network that combines tem-
poral propagation and re-identification functionalities into
an end-to-end framework. In particular, we present a re-
identification module with template expansion to retrieve
missing objects despite their large appearance changes.
Besides, we contribute an attention-based recurrent mask
propagation approach that is robust to distractors not be-
longing to the target segment. In order to increase the out-
put resolution, we further modify the input of DyeNet from
full-image to bounding box and use the feature pyramid
technique. Finally, we achieve a competitive global mean
(Region Jaccard and Boundary F measure) of 73.8 in the
2018 DAVIS Challenge1.

1. Introduction

Semi-supervised video object segmentation [10] aims at
tracking the foreground objects from the background region
in the video sequence, given their ground-truth masks in
the first frame. A notable and challenging benchmark for
this task is 2018 DAVIS Challenge [2]. An example of a
sequence is shown in Fig. 1. The DAVIS dataset presents
real-world challenges that need to be solved from two key
aspects. First, since there are multiple instances in a video,
it is likely that they will occlude each other. Second, in-
stances typically experience substantial variations in both
scale and pose across frames.

To address the occlusion problem, notable studies such
as [1, 13] adapt generic semantic segmentation deep model

1An earlier and more complete report of this study is available at
https://arxiv.org/abs/1803.04242

(a) Template matching approach 

(c) DyeNet

(b) Temporal propagation approach 

Figure 1: In this example, we focus on the bicycle. (a) shows the
result of template matching approach which is affected by large
scale and pose variations. As shown in (b), the temporal propa-
gation approach is incapable of handling occlusion. The proposed
DyeNet joints them into a unified framework, first retrieves high
confidence starting points and then propagates their masks bidirec-
tionally to address those issues. The result of DyeNet is visualized
in (c). Best viewed in color.

to the task of specific object segmentation. Often, a fixed set
of templates such as the masks of target objects in the first
frame are used for matching targets. This paradigm fails
in some challenging cases (see Fig. 1(a)), as using a fixed
set of templates cannot sufficiently cover large scale and
pose variations. To mitigate the variations in both scale and
pose across frames, existing studies [9, 8] exploit temporal
information to maintain continuity of individual segmented
regions across frames. On unconstrained videos with severe
occlusions (see Fig. 1(b)), approaches based on temporal
continuity are prone to errors.

In this study, we bring template matching and tempo-
ral propagation approaches into a single unified network.
Our network hinges on two main modules, namely a re-
identification (Re-ID) module and a recurrent mask prop-
agation (Re-MP) module. The Re-ID module helps to es-
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Figure 2: (a) The pipeline of DyeNet. The network hinges on two main modules, namely a re-identification (Re-ID) module and a
recurrent mask propagation (Re-MP) module. (b) The network architecture of the re-identification (Re-ID) module. Best viewed in color.

tablish confident starting points in non-successive frames
and retrieve missing segments caused by occlusions. Based
on the segments provided by the Re-ID module, the Re-MP
module propagates their masks bidirectionally by a recur-
rent neural network to the entire video. Besides, a new at-
tention mechanism makes the Re-MP module more resilient
to distractors. In addition, the Re-ID and Re-MP steps are
conducted in an iterative manner, which allows us to iden-
tify confidently predicted mask in each iteration and expand
the template set in the Re-ID module. The process of con-
ducting Re-ID followed by Re-MP may be imagined as dye-
ing a fabric with multiple color dots (i.e., choosing starting
points with re-identification) and the color disperses from
these dots (i.e., propagation). Drawing from this analogy,
we name our network as DyeNet. As shown in Fig. 1(c),
DyeNet is capable of segmenting multiple instances across
a video with high accuracy through Re-ID and Re-MP.

In the 2018 DAVIS Challenge, we modify the archi-
tecture of original DyeNet (e.g., two-stream network, fea-
ture pyramid) to further improve the performance. Finally,
we achieve a competitive global mean (Region Jaccard and
Boundary F measure) of 0.738.

2. Methodology

We provide an overview of the proposed approach. Fig-
ure 2(a) depicts the architecture of DyeNet. It consists of
two modules, namely the re-identification (Re-ID) module
and the recurrent mask propagation (Re-MP) module. The
network first performs feature extraction.

Feature extraction. Given a video sequence with N frames
{I1, ..., IN}, for each frame Ii, we first extract a feature
fi by a convolutional feature network Nfeat, i.e., fi =
Nfeat(Ii). Both Re-ID and Re-MP modules employ the
same set of features in order to save computation. Consider-
ing model capacity and speed, we use ‘conv1’ to ‘conv4 x’
of ResNet-101 [6] as the backbone of Nfeat. To increase

the resolution of features, we decrease the convolutional
strides and employ the dilated convolutions similar to [3].
Iterative inference with template expansion. After fea-
ture extraction, DyeNet runs Re-ID and Re-MP in an iter-
ative manner to obtain segmentation masks of all instances
across the whole video sequence. In the first iteration, the
Re-ID module generates a set of masks from object propos-
als and compares them with ground-truth templates given
in the first frame. Masks with a high similarity to templates
are chosen as the starting points for Re-MP. Subsequently,
Re-MP propagates each selected mask (i.e., starting point)
bidirectionally, and generates a sequence of segmentation
masks, which we call tracklet. In subsequent iterations,
DyeNet chooses confidently predicted masks to expand the
template set and reapplies Re-ID and Re-MP. Template ex-
pansion avoids heavy reliance on the masks provided by the
first frame, which may not capture sufficient pose variations
of targets. In this work, DyeNet stops the iterative process
when no more high-confident masks can be found by the
Re-ID module. Next, we present the Re-ID and Re-MP
modules.

2.1. Re-identification

Figure 2(b) illustrates the Re-ID module to search for
targets in the video sequences. For the i-th frame, besides
the feature fi, the Re-ID module also requires the object
proposals [12] {bi1, ..., biM} as input where M indicates the
number of proposal bounding boxes on this frame. For each
candidate bounding box bi

j
, we first extract its feature from

fi, and resize the feature into a fixed size m ⇥ m (e.g.,
28⇥28) by RoIAlign [5]. The extracted features are fed
into two shallow sub-networks. The first sub-network is
a mask network that predicts a m ⇥ m binary mask that
represents the segmentation mask of the main instance in
candidate bounding box bi

j
. The second sub-network is a

re-identification network that projects the extracted features
into an L2-normalized 256-dimensional subspace to obtain
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Figure 3: (a) Illustration of bi-direction mask propagation. (b)
The network architecture of the recurrent mask propagation (Re-
MP) module. Best viewed in color.

the mask features. The templates are also projected onto
the same subspace for feature extraction. By computing the
cosine similarities between the mask and template features,
we can measure the similarity between candidate bounding
boxes and templates. If a candidate bounding box is suffi-
ciently similar to any template, we will keep its mask as a
starting point for mask propagation.

We employ ‘conv5 x’ block of ResNet-101 as the back-
bone of the sub-networks. However, some modifications
are necessary to adapt them to the respective tasks. In par-
ticular, we decrease the convolutional strides in the mask
network to capture more details of prediction. For the re-
identification network, we keep the original strides and ap-
pend a global average pooling layer and a fully connected
layer to project the features into the target subspace.

2.2. Recurrent Mask Propagation

As shown in Fig. 3(a), we bi-directionally extend the re-
trieved masks (i.e., starting points) to form tracklets by us-
ing the Re-MP module. We formulate the Re-MP module as
a Recurrent Neural Network (RNN). Figure 3(b) illustrates
the mask propagation process between adjacent frames.

Suppose ŷ is a retrieved segmentation mask for instance
k in the i-th frame, and we have propagated ŷ from i-th
frame to (j � 1)-th frame, {yi+1, yi+2, ..., yj�1} is the se-
quence of binary masks that we obtain. We now aim to
predict yj , i.e., the mask for instance k in the j-th frame. In
a RNN framework, the prediction of yj can be solved as

hj = NR(h(j�1)!j , xj), (1)
yj = NO(hj), (2)

where NR and NO are the recurrent function and output
function, respectively. We first explain Eq. (1). We begin
with estimating the location, i.e., the bounding box, of in-
stance k in the j-th frame from yj�1 by flow guided warp-
ing. FlowNet 2.0 [7] is used to extract the optical flow
F(j�1)!j between (j � 1)-th and j-th frames. The binary
mask yj�1 is warped to y(j�1)!j according to F(j�1)!j

(a) Vanilla Re-MP 

(b) Re-MP with Attention Mechanism 

Figure 4: Region attention in mask propagation.

by a bilinear warping function. After that, we obtain the
bounding box of y(j�1)!j as the location of instance k in
the j-th frame. We extract the feature map according to this
bounding box from fj by RoIAlign operation. The feature
of this bounding box is denoted as xj . The historical infor-
mation of instance k from i-th frame to (j � 1)-th frame is
expressed by a hidden state or memory hj�1 2 Rm⇥m⇥d,
where m ⇥m denotes the feature size and d represents the
number of channels. We warp hj�1 to h(j�1)!j by opti-
cal flow for spatial consistency. With both xj and h(j�1)!j

we can estimate hj by Eq. (1). Similar to the mask net-
work described in Sec. 2.1, we employ ‘conv5 x’ block of
ResNet-101 as our recurrent function NR. The mask for the
instance k in the j-th frame, yj , can then be obtained by us-
ing the output function in Eq. (2). The output function NO

is modeled by three convolutional layers.

Region attention. The quality of propagation to obtain yj
relies on how accurate the model in capturing the shape of
target instance. As shown in Fig 4(a), if we directly gener-
ate yj from hj , a model is likely to be confused by distrac-
tors that appear in the bounding box. To overcome this is-
sue, we leverage the attention mechanism to filter out poten-
tially noisy regions. Specifically, given the warped hidden
state h(j�1)!j , we first feed it into a single convolutional
layer and then a softmax function, to generate the attention
distribution aj 2 Rm⇥m⇥1 over the bounding box. Fig-
ure 4(b) shows the attention distributions we learned. Then
we multiply the current hidden state hj by aj across all
channels to focus on the regions we interested. As shown in
Fig. 4, the Re-MP module concentrates on the tracked ob-
ject thanks to the attention mechanism. After the forward
and backward propagation, ŷ is finally extended to a track-
let {yk1, ..., yi+1, ŷ, yi+1, ..., yk2}. This process is applied
to all the starting points to generate a set of tracklets.

Linking the tracklets. We introduce a greedy approach to
link the potentially segmented tracklets into consistent mask
tubes. It sorts all tracklets descendingly by cosine similar-
ities between their respective starting point and templates.
Given the sorted order, the method then examines all track-
lets in turn. A tracklet is merged with a tracklet of higher
order if there is no contradiction between them. In practice,
this simple mechanism works well.



Table 1: Ablation study of each module in DyeNet with
DAVIS17 test-dev.

Variant J -mean F -mean G-mean �G-mean
MSK[9] ResNet-101 50.9 52.6 51.7 -

Re-MP no attention 55.4 60.5 58.0 + 6.2
full 59.1 62.8 61.0 + 9.2

+ Re-ID 65.8 70.5 68.2 + 7.2
Advanced bbox input

67.5 71.0 69.3 + 1.1DyeNet two-streams

3. DAVIS 2018 Challenge

In the 2018 DAVIS Challenge, we apply several essen-
tial modifications to the original DyeNet to further improve
the performance. Rather than full-resolution images, the
advanced DyeNet accepts size-normalized patches that en-
close objects of interest as input, which allows our model to
better cope with objects of different scales. We employ the
two-stream architecture in our advanced DyeNet to better
capture the temporal information in the video sequences. In
addition, we also train another DyeNet with a deeper back-
bone (Xception65 [4]) and ensemble two variants together
to obtain the final results.

4. Experiments

We evaluate our DyeNet on DAVIS 2017 [11] (DAVIS17)
dataset, which contains 150 high-quality video sequences
with all frames annotated with pixel-wise object masks. The
train set and val set of DAVIS17 are used for training. Fol-
lowed [11], we adopt region (J ), boundary (F) and their
average (G) measures for evaluation.
Effectiveness of each component in DyeNet. Table 1 sum-
marizes how performance gets improved by adding each
component step-by-step into our DyeNet on the test-dev set
of DAVIS17. The state-of-the-art mask propagation method,
MSK [9], is chosen as the baseline. To ensure a fair com-
parison, we re-implement MSK to have the same backbone
ResNet-101 as DyeNet. All models in this experiment are
first offline trained on the train and val set, and then online
trained on the test-dev set.

Compared with MSK, our vanilla Re-MP module sig-
nificantly improves G-mean by 6.2. The attention mecha-
nism allows Re-MP module to focus on foreground regions,
which further improves G-mean by 3.0. The full DyeNet
that contains both Re-ID and Re-MP modules achieves 68.2
by using the greedy algorithm to link the tracklets. After
modified the input from full-image to bounding box and em-
ployed the two-stream architecture, our advanced DyeNet
finally achieves 69.3 on the test-dev set.
Benchmark. As shown in Table 2, in 2018 DAVIS Chal-
lenge, ensemble DyeNet achieves a competitive G-mean of
73.8 on test-challenge set.

Table 2: Results on DAVIS17 test-challenge.

J -mean F -mean G-mean

Apata 65.1 70.6 67.8
TeamILC RIL 67.5 71.5 69.5
Dawnsix 66.9 72.5 69.7
Jono 71.0 78.4 74.7

Ours 71.9 75.8 73.8

5. Conclusion

We present DyeNet, which joints re-identification and
attention-based recurrent temporal propagation into a uni-
fied framework to address challenging video object seg-
mentation with multiple instances. After applied several
essential modifications, our DyeNet achieves a competitive
global mean of 73.8 in the 2018 DAVIS Challenge.
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