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Abstract

This paper presents a class-agnostic video object seg-

mentation approach that won the 3rd place in the 2018

DAVIS Challenge (semi-supervised track). The proposed

approach does not use any semantic object re-identification

module and thus is more generic to handle unknown types

of objects. Specifically, the approach is composed of four

steps: 1) An instance proposal box for a given object is

predicted from its history trajectories using a linear mo-

tion model with explicit occlusion detection; 2) A coarse

mask is generated by fusing the warped mask from the pre-

ceding frame and the mask prediction from One-Shot Video

Object Segmentation (OSVOS) CNN; 3) The coarse mask,

truncated by the instance proposal box, is then fed into a

mask refinement CNN to get a more detailed mask; 4) An

iterative spatio-temporal refinement is lastly performed to

get the final segmentation results. For multiple objects case,

each single object is dealt with individually and merged into

one mask by considering temporal consistency. The effec-

tiveness of the proposed approach is demonstrated with ex-

periments on very challenging sequences.

1. Introduction

Semi-supervised video object segmentation, a labeling
task aiming to segment one or more objects from back-
ground in a video according to the ground-truth pixels of the
given objects in the first frame, has been a crucial task with
extensive applications in video editing, video summariza-
tion, action recognition, etc. Perazzi et al. [11] has intro-
duced DAVIS dataset recently, which promotes the develop-
ment of this field with many deep neural approaches [4, 8, 9]
proposed on it. The 2018 DAVIS challenge [5] introduces
many pitfalls such as fast motions, small objects, severe
inter-object occlusions and so on. To overcome these chal-
lenges, we propose a class-agnostic video object segmenta-
tion approach with capacity of object recapturing after miss-
ing without resorting to semantic re-identification modules.

The pipeline of our approach, shown in Fig 1, consists of
four parts: 1) instance bounding box prediction; 2) coarse

mask generation; 3) mask refinement CNN; 4) iterative
spatio-temporal refinement. In the first part, a linear motion
model predict the bounding box of object roughly, together
with occlusion detection model to recapture when target
lost caused by severe inter-object occlusion or fast motion.
Plenty of previous works fix occlusion issue with semantic
information such as object detection [9, 10], semantic seg-
mentation [8, 10, 12] and people search [10]. Our occlusion
detection model only tasks non-semantic information (optic
flow and results of OSVOS [4]) as inputs. Warped instance
mask by optic flow [7] along with the OSVOS segmentation
result refines the bounding box predicted by motion model.
Besides, the OSVOS result is helpful to recapture the lost
instance under the temporal knowledge of bounding box
history. The third and fourth parts generate instance mask
in a cascaded way: the coarse mask is fused by the warped
mask and the OSVOS result; the coarse mask and original
image croped with the predicted bounding box are then fed
into a mask refinement CNN to get mask with more de-
tail. After mask propagation, we adopt the spatio-temporal
MRF model [2] to refine generated mask, enforcing the in-
ference result in each frame more like the specific object.
With a class-agnostic architecture, our approach is able to
segment arbitrary types of objects, and we demonstrate its
effectiveness by achieving the 3rd place in the 2018 DAVIS
challenge (out of 18 participants).

2. Class-Agnostic Video Object Segmentation

Fig 1 shows the pipeline of proposed approach. The de-
tail of each part is presented in the flowing subsection. As
default, the discussion is based on the instance-specific case
except the masks margining part in the last subsection.

2.1. Instance Bounding Box Prediction

The bounding box prediction model is based on a lin-
ear motion model predicting object position and size with
its historical movement. It proved to be that the linear mo-
tion model is effective enough except in some extreme cases
such as large change in acceleration, serious occlusion and
object out of view. Therefore, the occlusion detection model
is introduced to recapture the object when the motion model
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Figure 1. Pipeline of the proposed approach. The MRF model works on the entire sequence.

lost its efficacy.
Linear Motion Model. The bounding box of object in

frame Ft depends on two main variable: size st, (wt, ht)
and center point coordinate pt, (xt, yt). In our work, the
historical movements in n frame from Ft�n to Ft�1 are
adopted as prior knowledge. For the position prediction,
the velocity vt is estimated by

vt =
1

n
↵
lt

t�nX

m=t�1

pm � pm�1, (1)

where lt denotes to the frame number since the last time
that object is lost in motion model, and ↵

lt is an attenuation
factor according to the time since object has been lost. Then
the predicted center point is obtained by pt = pt�1+vt. As
to the size, average size is taken as the predicted object size

st = 1
n�

lt
t�nP

m=t�1
sm with an expansion factor �

lt , since

that the change in size is tiny and smooth. With the estima-
tion of pt and st, the motion model gives the bounding box
candidate bt for the following occlusion detection.

Occlusion Detection Model plays an important role in
two aspects: 1) refining bbox prediction in the motion
model; 2) recapturing object when the motion model lost
efficacy. Given the bounding box candidate bt, we gener-
ate a two-dimensional gaussian map Gt with parameters of
�
t
x = wt/2,�

t
y = ht/2, which is used to obtain the weighted

mask Wt = (Gt ·Ot > th) from OSVOS segmentation re-
sult Ot without noise out of the region of interest. The
warped mask Qt from Mt�1 with optic flow [7, 1, 3] is
then merged by Wt to give the coarse mask prediction Ct.
The refined bounding box prediction bt is finnally extracted
with the coarse mask Ct by a margin. However, the oc-
clusion detection model will doubt the confidence of bt if
bt is too small relative to the initial size or very cluttered.
In this case, the weighted mask Wt is taken as the recap-
tured coarse mask with small blobs removed. The recap-
tured bounding box is then obtained based on Wt.

Algorithm 1 Our Bounding Box Prediction Model.
Input:

original frame Ft, valid warped mask Qt, OSVOS mask
Ot, ground truth mask M0, center point history P =
{pm|m = 0, . . . , t�1}, bbox size history S = {sm|m =
0, . . . , t� 1}, number of frames T .

Output:

set recapture flag R ( False; lt ( 0;
for t from 1 to T do

if sum(Qt) < ⌘ · sum(M0) then

R ( True;
else

bt = linear motion model(P, S, lt);
Ct = merge masks(Qt, (Gt ·Ot > th));
extract bt from Ct;
if bt is small or bt changes a lot from history then

R ( True;
end if

end if

if R == True and object is not stringy or small then

bt = linear motion model(P, S, lt) ;
if sum(Wt) < ⌘ · sum(M0) then

recapturing failed; lt ( lt + 1;
else

extract bt from Wt; lt ( 0; R ( False;
end if

end if

end for

return {bm|m = 1, . . . , T};

Summarize: The overall flow of the bounding box pre-
diction algorithm is shown in Algorithm 1. The occlusion
detection will recapture the bounding box if the bt is in un-
reasonable case such as bt is too small over the initial size,
Ct is too clutter or bt moves fast in comparison to the histor-
ical velocity. Recapturing strategy is turned off for objects
that are stringy or too small since the OSVOS results for



such objects are not reliable (we use some simple rules to
determine if an object is stringy/small based on the shape of
its given mask).

2.2. Coarse Mask Generation

The coarse mask Ct is obtained by the fusion
of the warped mask Qt and weighted OSVOS re-
sult Wt with an overlap-merging strategy. Define
BWt=

�
b
m
Wt

,m = 1, . . . ,K
 

as a set of regions in Wt, the
merging strategy can be formulated as:

Ct = Qt [
(

K[

m=1

�
�
sum

�
b
m
Wt

[ (Qt \Wt)
��

· bmWt

)
,

(2)

where function � (x) =

⇢
0, t  0
1, t > 0

. The merging strategy

takes Qt as base and merge regions in Wt that have over-
lapped parts with Qt into the base.

2.3. Mask Refinement CNN

The mask refinement CNN is built based on the one
stream architecture in LucidTracker [8]. In our network,
in order to take advantage of multi-scale information, fea-
tures from pooling layer of block 1 to 4 in vgg architecture
are fed to a convolutional layer with 1 ⇥ 1 kernel and an
interp layer, and then combined with the features from the
ASPP layer in Deeplab v2 [6]. Besides, rather than uti-
lizing full-resolution images, we prefer to take cropped re-
gions (4-channel, RGB+coarse mask) from the images Ft

and the coarse masks Ct according to bounding box as net-
work input, which proved to bring more details in the fi-
nal segmentation. The network is firstly trained offline us-
ing training set in 2018 DAVIS; and then trained with Lu-
cid data augmentation [8] online with each challenge se-
quence. The detailed segmentation is then generated by
St = mask refinment CNN(Ft, Ct, bt).

2.4. Iterative Spatio-Temporal Refinement

We further refine S = {Sm,m = 1, . . . , T} by adopt-
ing a spatio-temporal Markov Random Field (MRF) [2],
which is capable of utilizing both spatial and temporal in-
formation to refine the masks. With an alternating of spa-
tial mask refinement and temporal fusion, some lost de-
tails can be rebuilt in a way of spatio-temporal “voting”.
Experiments in Sec. 3 show the big improvements with
this step. After this step, the fine instance-specific masks
V = {Vm,m = 1, . . . , T} are obtained, which is then
merged to the final multi-instance segmentation.

The merging strategy is shown in Algorithm 2: spatial
confidence firstly decide which object the overlapped blobs
belonging to, and the temporal coherency is taken into ac-
count as additional information when it is ambiguous to use
spatial information only.

Algorithm 2 Our Multi-Instance Merging Strategy.
Input:

fine instance-specific masks V i
t , i = 1, . . . , n for all ob-

jects, history mask V
i
t�1, segmentation probability map

from refinement mask CNN Z
i
t , i = 1, . . . , n.

Output:

set multi-instance segmentation Yt with the object id that
has the max value in Vt pixel-by-pixel;
for patch a in all overlap patches do

Ids ( all object ids sorted by the value sum
�
Z

i
t [a]

�

from high to low;
if sum

⇣
Z

Ids[0]
t [a]

⌘
· � > sum

⇣
Z

Ids[1]
t [a]

⌘
then

Yt[a] ( Ids[0];
else

obtain the warped mask Q
Ids[0]
t from V

Ids[0]
t�1 ,

Q
Ids[1]
t from V

Ids[1]
t�1 ;

if sum
⇣
Q

Ids[0]
t [a]

⌘
> sum

⇣
Q

Ids[1]
t [a]

⌘
then

Yt[a] ( Ids[0];
else

Yt[a] ( Ids[1];
end if

end if

end for

return Yt for the multi-instance segmentation;

3. Experiments

Experimental Setup: in the 2018 DAVIS challenge, we
set ↵ = 0.9, � = 1.05, history number n = 10 in motion
model, ⌘ = 0.5, confidence threshold value th = 0.3, � =
0.8 in merging strategy. The OSVOS setting follows the
work in [4], trained with data augmentation strategy such as
random crop, random scale, vertical flip, random changes in
brightness, saturation and contrast. For the refinement mask
CNN, we first train it online with 500k iteration in a lr of
1e�3, following by another 2k iteration online training on
1k lucid data for each challenge sequences with lr = 1e�4.

Experimental Results: our approach achieve a global
mean (scores from Region J and Boundary F) of 69.7
(the 3d place out of 18 participants) on 2018 DAVIS test-
challenge set, shown in Table 3 with name “Dawnsix”.
Some qualitative results are shown in Fig 2.

Ablation Study: due to limited number of submissions
in 2018 DAVIS challenge dataset, we investigate the ef-
fects of each part in our approach based on 2017 DAVIS
test-dev dataset. Taken the linear motion model and coarse
mask generation model as our baseline model, we achieve
a global mean score 52.8. Shown in Table 3, the occlusion
detection model brings an obvious improvement (52.8 !
60.1) thanks to its ability to refine bounding box and re-
capture instance. The iterative spatio-temporal refinement



Figure 2. Qualitative results from the 2018 DAVIS challenge. Images are sampled at the average intervals for each sequence.

Table 1. Results on the 2018 DAVIS test-challenge set.

Measure Jono Lixx Dawnsix
Team

ILC RIL
Ranking 1 2 3 4

Global Mean " 74.7 73.8 69.7 69.5
J Mean " 71.0 71.9 66.9 67.5
J Recall " 79.5 79.4 74.1 77.0
J Decay # 19.0 19.8 23.1 15.0
F Mean " 78.4 75.8 72.5 71.5
F Recall " 86.7 83.0 80.3 82.2
F Decay # 20.8 20.3 25.9 18.5

Table 2. Ablation study on the 2018 DAVIS test-dev set.
Approach score boost
linear motion model
+ coarse mask generation model 52.8 -

+ occlusion detection model 60.1 7.3

+ mask refinement CNN 62.9 2.8
+ iterative spatio-temporal refinement 68.1 5.2

gives another big improvement (62.9 ! 68.1) with 10 iter-
ations of TF and MR [2].

4. Conclusion

We have presented a class-agnostic approach for semi-
supervised video object segmentation. In contrast to previ-
ous works, our approach is able to recapture missing objects
utilizing only non-semantic information. The proposed ap-
proach does not use any semantic object re-identification
module, which is commonly adopted by other participants,
and thus is more generic to handle unknown types of ob-
jects. Experimental results demonstrate the effectiveness of
the proposed approach. In future work, we will replace the
occlusion detection model with learned models from data
and expect further improvements.
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