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Abstract

We tackle the task of semi-supervised video object seg-

mentation, i.e. pixel-level classication of the images in

video sequences using only the ground truth mask for the

first frame of its corresponding video. Recently intro-

duced online adaptation of convolutional neural networks

for video object segmentation (OnAVOS) has achieved ex-

cellent results by pretraining the network, fine-tuning on

the first frame and training the network at test time using

its approximate prediction as newly obtained ground truth.

While achieving impressive performance, OnAVOS uses

simple approximation of its online prediction as ground

truth for online updates, which leaves signicant potential

information unused. We propose Flow Adaptive Video Ob-

ject Segmentation (FAVOS) that refines the generated adap-

tive ground truth for online updates and utilizes temporal

consistency between video frames with the help of optical

flow. Our experiments show that FAVOS improves the state

of the art on DAVIS 2016 Challenge from a mIoU (mean

intersection-over-union) of 0.861 to 0.870. For the Semi-

supervised track of the 2017/2018 challenge, we improve J

& F measures from 0.565 (OnAVOS) to 0.617 on the test-

development set, and from 0.577 (OnAVOS) to 0.606 on the

test-challenge set.

1. Introduction

As Convolutional Neural Networks (CNNs) revolution-
ize the field of computer vision, there has been a trend to
move from tasks such as image classification [1, 2, 3, 4] to
object detection [5, 6, 7, 8], and from image segmentation
[9, 10, 11, 12] to video object segmentation [13, 14, 15, 17].
Video object segmentation and tracking is vital in computer
vision and has many significant applications such as video
editing, autonomous vehicles, robotics etc. The segmenta-
tion task for video objects involves classifying each pixel as
to whether it is part of a specific object in image frames of
videos. The capability to successfully segment objects in
videos is a key step towards human-level understanding of

the surrounding environment for machines.
Recently in video object segmentation (VOS), many

have achieved good performance by pretraining on large
classification datasets to help the networks learn general ob-
jectness [21, 13, 14]. Many have used optical flow to help
networks learn temporal consistency [15, 17, 21, 22, 23].
Some update the networks online at test time using previ-
ous predictions in order to adapt to large changes and keep
track of objects during the video sequences [14, 15, 25, 26].
There are also interesting works tackling the task of VOS
using unsupervised methods [27, 28], which have great po-
tential.

This paper focuses on the task of semi-supervised video
object segmentation, testing on the recently introduced
DAVIS (Densely Annotated VIdeo Segmentation) dataset
[18, 19, 20], which requires a segmentation of pixels in
video sequences, classifying between foreground and back-
ground (DAVIS 2016 [18]) or multiple objects (DAVIS
2017/2018 [19]) given the ground truth of the first frame.
Our approach improves OnAVOS [14] by adding an adap-
tation algorithm that refines the adaptation masks with the
utilization of optical flow. Optical flow fields are vector
fields that indicate the motion of pixels from Imaget to
Imaget+1. We refer to our approach as Flow Adaptive
Video Object Segmentation (FAVOS).

2. Related Work

Video Object Segmentation and Tracking. Recently,
as large datasets and computational power become more
available, convolutional neural network based approaches
[13, 14, 15, 24, 29] have become the state of the art in
VOS. Pretraining on large image classification datasets has
been proven effective for semi-supervised VOS [13, 14].
Alternatively, Khoreva [15] performs extensive data aug-
mentation on specific videos using the provided first frame
ground truth, and argues that training on small sets of data
of objects related to specific videos is sufficient to produce
good results. Le [16] and Li [17] firstly detect the target
objects and perform segmentation on the detected bound-
ing boxes, their methods perform well on re-identifying
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previously missing objects. The usage of optical flow is
also common. Khoreva [24] uses optical flow to propagate
previous masks and treats the segmentation task as a mask
refinement task. In addition, [15, 17, 24] utilize temporal
consistency by feeding the optical flow field as additional
input to the models. While others have mostly used optical
flow as additional input to variational pipelines, hoping that
CNNs would automatically learn the temporal connections
between frames, we propose to use precomputed optical
flow directly to refine the adaptation masks for accurate
new ground truth masks and update the network online.

FCNs for Semantic Segmentation. Solving the task
of semantic segmentation using fully convolutional net-
works (FCNs) was initially proposed by Long et al. [29].
They replace the fully-connected layers in classification
networks with 1x1 convolutions so the network becomes
fully convolutional. In addition, they define skip connec-
tions that share features between different levels in the
network to help produce detailed segmentation. Wu [30]
and Zagoruyko [4] proposed shallower but wider residual
network models that outperform their predecessors in
image classification. Additionally, Wu introduced a slightly
modified model for semantic segmentation task which also
shows competitive results across multiple datasets.

We propose to improve the recently introduced online
adaptation of convolutional neural networks for video
object segmentation (OnAVOS) [14]. OnAVOS adopted
the architecture proposed by [30], achieved first place
on DAVIS 2016 Challenge and fifth place on DAVIS
2017 Challenge. OnAVOS builds on OSVOS [13], which
introduces pretraining steps for the network to learn
general objectness before fine-tuning on the ground truth
mask of the first frame in a specific video at test time.
OnAVOS claims that its predecessor lacks the ability to
adapt to large changes in video sequences due to its limited
knowledge based only on the first frame of videos, and
adaptively introduces an approach to update the network
during test time, training on previous high-confidence
predictions. However, the applied method for obtaining the
high-confidence prediction is rather simple, which applys
a constant threshold to the foreground logits to extract the
confident foreground regions, and a distance transform
followed by a very large distance threshold to extract
the confident background regions, which neglects large
portions of effective potential training due to its simplicity
in selection of the new masks for online adaptation.

3. FAVOS

We introduce Flow Adaptive Video Object Segmenta-
tion (FAVOS) that extracts its high-confidence regions for
the online training with the guide of optical flow [31, 32].
Originally, OSVOS states that methods using temporal

Figure 1. FAVOS online adaptation pipeline. We combine the cur-
rent prediction and flow warpped estimation to create adaptation
mask, which we use to finetune the network online for final pre-
diction on each frame. Best viewed in color.

consistency (including optical flow) work well when the
target objects transition very gradually, but fail in cases
such as occlusions and abrupt motion. Building on OSVOS,
OnAVOS does not utilize any temporal information either.
We have also observed that the current top-performing
approach [32] for obtaining the optical flow field is far from
perfect and its usage could possibly lead to degradation in
performance in video object segmentation. The question
becomes: how can we utilize the rough optical flow field
estimation correctly to improve performance?

The main idea of our approach is to obtain the confident
foreground and background regions by utilizing the current
prediction and the previous prediction remapped (flow
warped) by the optical flow field. The adaptation algorithm
used by OnAVOS [14] utilizes the temporal connection
between previous and current predictions by using regions
too far away from previous foreground prediction as a
mask for current background predictions, which is simple
yet produces good results. The intuition is that new objects
entering the scenes are particularly troublesome to predict
since the network has not trained on them as negative
examples and therefore outputs high probabilities. By
using the previous mask to help determine an approximate
foreground region, the false positives far away from
previous foreground can be set as background for training
before the final prediction. However, OnAVOS had to set
the foreground logits threshold value ↵ and background
distance threshold value d very high for safe adaptations,
therefore leaving out much blank area between the confi-
dent foreground and background for useful training.

In order to obtain more informative and still ac-
curate adaptation masks, we have performed numerous
experiments which utilize additional information other
than the current and previous predictions, particularly the
optical flow field (obtained using FlowNet2.0 [32]). Fig. 1
illustrates our approach. Initially, we used the optical flow
field in a similar way to [24], which intends to extract a
rough segmentation mask of the primary object using the
flow field, based on the assumption that objects tend to have
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Figure 2. Optical flow fields with helpful segmentation informa-
tion, consistent motion in foreground and background (first row).
Optical flow fields that have various motion in foreground and
background, therefore the target object’s segmentation informa-
tion cannot be extracted (second row).

consistent motion. This approach works well on videos
where the background motion is consistent and the primary
target object has a different motion than the background,
but fails in most other more general cases (see fig. 2). As a
result, instead of using the optical flow field for additional
segmentation information, we use it as a mapping tool that
warps the previous mask to produce a current estimation
[15], which we refer to as flow estimation. To obtain
the confident adaptation mask in each frame of the video
sequence, our first step is to obtain the current foreground
prediction for each object. We use distance transform
on the predicted foreground object and select the region
with distance values larger than an adaptive threshold
determined by a percentile value ⇢, such that the inner ⇢%
of the initial foreground is selected as confident foreground
region. The second step is to produce flow estimation for
each object. We then generate the confident foreground
region using both the current prediction and the flow esti-
mation, which checks the agreement between the current
prediction and the flow estimation by using the IoU and
selecting the confident foreground region accordingly. To
avoid training on incorrect pixels, which can immediately
lead to escalated errors in future predictions, we insert an
unsure layer where no training takes place. The unsure
layer is generated by applying a distance transform and
a distance threshold on the confident foreground region,
so pixels that are within the range of d pixels from the
foreground are selected as unsure. The value of d is
adaptively determined by the optical flow magnitude for
the target object. Finally, the confident background region
is simply the region outside of the unsure region. After
obtaining the confident regions for all objects, we combine
them to produce the final adaptation mask for the current
frame. In general, we want to maximize the confident
foreground/background region and minimize the number
of incorrectly labeled pixels for the adaptation mask. As
for online adaptation, we iteratively fine-tune the network
by training on the adaptation mask of the current frame
(for ncur steps) and the ground truth of the first frame (for
nfirst steps). Re-training on the first frame is significant
since the current adaptation masks can be inaccurate and
the network needs to retain the knowledge of the target ob-

ject. For DAVIS 2016 dataset, we perform DenseCRF [33]
in the same fashion as OnAVOS. For DAVIS 2017/2018
dataset, the only post-processing required for the final
prediction is using connected-components labeling for
noise removal. We remove small components which fail to
exceed a size threshold of s = 5% of the largest component
for the corresponding object class.

4. Conclusion

In this work, we propose FAVOS for the task of semi-
supervised video object segmentation. We have improved
over OnAVOS, introducing a new pipeline that performs
online adaptation with the utilization of optical flow and
achieves better accuracy without increasing the model com-
plexity. FAVOS improves the state of the art on DAVIS
2016 Challenge from a mIoU of 0.861 to 0.870. For the
DAVIS 2018 challenge, we achieve the seventh place, im-
proving J & F measures from 0.565 (OnAVOS) to 0.617
on the test-development set, and from 0.577 (OnAVOS) to
0.606 on the test-challenge set.
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