
Video Object Segmentation via Tracking Edges and Classifying Segments

Vahan Petrosyan, Oscar Örnsberg, Alexandre Proutiere
KTH Royal Institute of Technology
{vahanp,oornberg,alepro}@kth.se

Abstract

One of the major difficulties in semi-supervised video
segmentation is to correctly track every pixel within consec-
utive frames. Optical flow algorithms are designed to solve
this pixel-wise tracking problem, but they perform poorly
when large object displacement, occlusion or drifting oc-
curs. Tracking large group of pixels (segments) significantly
reduces the tracking complexity. However, accurate seg-
mentation of regions of interest constitutes an additional
challenge to the problem. To address this issue, we propose
a post-processing framework which consists (i) in refining
the edges detected in the current frame, (ii) in using these
edges as input to a novel segmentation algorithm (referred
to as PALC), and (iii) for each of the obtained segment in
extracting features from the optical flow and onAVOS algo-
rithms, and feeding these features to a random forest predic-
tor. The proposed framework yields performance improve-
ments, and further provides an interactive tool for fast and
detailed refinements of the given frame where the algorithm
fails to produce high-quality segmentation.

1. Introduction

Pixel-level object tracking has recently received a lot of
attention due to increasingly many applications in video
editing, augmented reality, etc., [1, 2, 3]. Obtaining a pixel-
accurate mask of each frame without human input is very
challenging and current state-of-the-art unsupervised/semi-
supervised techniques fail to achieve near human accu-
racy [1, 4]. The difficulty in pixel-level tracking is mainly
due to effects such as large object displacement, occlusion,
and drifting. In video editing applications, achieving near
human-level accuracy is often necessary. In addition, track-
ing the objects is often case specific. For example, it is up to
the video editing professional to decide how to track reap-
pearing or splitting objects. Hence, having an interactive
tool for performing fast and accurate refinements is essen-
tial in many applications. It is very time-consuming for a
user to provide a pixel-accurate segmentation. According to
[5], it takes 79s to annotate a single object in a frame using

the polygon annotation tool. Instead of costly pixel-level
masks, [2, 6, 7, 8] propose to employ point clicks, scribbles
or text input to specify the target object in the refinement
frames. This improves the annotation speed several times
and it only takes 5-10 sec on average to label the object of
interest. When the user refines the annotation of the par-
ticular frame, it is essential to use that information in the
next frames to further improve the segmentation/annotation
quality.

Once the editing is done in the current frame, it is im-
portant to have fast refinements in the next frames. Cur-
rent state-of-the-art methods are slow and do not satisfy the
speed criteria of the video editing applications. [9] takes 3
sec per frame on a modern Titan Xp GPU. More recently,
[1] manages to achieve a performance of 2.4 frame per sec.
However, for a modern high-resolution video, the proposed
methods are still inapplicable.

In order to make the video segmentation more applica-
ble in video editing, we propose a three step solution which
does improve the object segmentation accuracy. Our solu-
tion consists of:

• An edge refinement network that uses the RCF edge
detector [10] to refine the edges of the current frame;

• A modification of Penalized Average Linkage Cuts
(PALC) [11] segmentation algorithm which uses the
refined edges and automatically adjusts the number of
segments;

• A Random Forest [12] algorithm which predicts the
class of every segment based on the features extracted
from the output of optical flow [13] and onAVOS [4]
algorithms.

Our solution can be viewed as a post-processing step,
where the RCF edge detector refines the segments of
the given semi-supervised video segmentation algorithm.
Given the output of the initial video segmentation algo-
rithm, the post-processing runs in 15 frames per sec on 480p
DAVIS segmentation images using a Titan Xp GPU. Our
solution further provides a fast refinement tool for future

The 2018 DAVIS Challenge on Video Object Segmentation - CVPR 2018 Workshops

frames: For every frame, the user would receive the seg-
mentation output, and the refinement of the segments could
be done with a simple click or brush tool.

In our experiments, the proposed framework was tested
on the output of the previous state-of-the-art algorithm on-
AVOS [4] and resulted in 1.9% and 0.6% improvement on
average J and F scores, respectively. While we are not
able to conclude that this step gives an improvement for all
the other algorithms, we can imply that the proposed frame-
work can provide fast refinements for all the video segmen-
tation/annotation tasks.

2. Proposed Framework

The pipeline of the proposed framework is shown in Fig-
ure 1.

2.1. Edge Refinement

Traditional edge detection methods [14, 15] extract
edges based on color, gradient, texture, or other manually
designed features on the local neighborhood of each pixel.
In recent years, deep learning based edge detectors signif-
icantly improved the quality of edge detection. HED [16]
was one of the first real-time edge detection algorithms
that significantly improved the performance of the previ-
ous state-of-the-art methods. More recently, [10] (RCF)
achieved super-human performance on edge detection tasks.
The edges extracted from RCF are class agnostic. In video
segmentation, however, edge information extracted from
the previous frames can be beneficial to perform edge re-
finement.

In this paper, we define an edge refinement network us-
ing the RCF edge detector. The network takes a 3-channel
input consisting of the agnostic edges of RCF (Figure 1
(a)), the edges of a given video segmentation prediction (on-
AVOS in this case, Figure 1 (b)) and the optical flow [13]
of the edges generated from the previous frame (Figure 1
(c)). Then, we train the RCF network to perform an edge
refinement. Specifically, the network learns to get rid of un-
necessary edges provided by the agnostic RCF and falsely
detected edges provided by the given video segmentation al-
gorithm. Figure 1 shows an example of such an input (a,b,c)
where the corresponding output of refined edges is shown in
(d). Note that the network correctly eliminated the agnostic
edges on the ceiling (Figure 1 (a)), since it did not observe
any object of interest there. In addition, it correctly elimi-
nated the onAVOS edges generated on the frontman’s body,
while adding extra edges on his right leg.

2.2. Segmentation via Penalized Average Linkage

Cut (PALC)

In this subsection, we present the Penalized Average
Linkage Cut (PALC), an algorithm that takes as input the
image and its adjusted edge information and outputs the

segments by successively merging the two superpixels ex-
hibiting the highest PALC similarity.

Superpixel Similarity: Consider an image X =
{x`}N`=1 consisting of N pixels1. Let C = {c`}N`=1

2 rep-
resent the contour information of image X , given by an ar-
bitrary contour detection algorithm. Let S = {Si}Ki=1 rep-
resent the decomposition of X into K superpixels (Si ⇢
{1, . . . , N}).

From the image X , we construct a weighted graph of de-
gree 4, G = (V, E ,W), whose vertices V are the pixels of
the image, and whose edges E form a grid connecting neigh-
bouring pixels (each pixel is connected to its up, down, left
and right neighbour pixel). The weight of an edge repre-
sents the similarity of the corresponding two pixels: for

pixels `, `0, we define w`,`0 = e�
c`+c`0

�1 if (`, `0) 2 E and
0 otherwise. When the pixels `, `0 actually belong to object
boundaries, the contour values c`, c`0 tend to be high and
hence the weight w`,`0 tend to be very small. The cut value
of two superpixels Si and Sj is then defined by:

Cut(Si, Sj) =
X

`2Si

X

`02Sj

w`,`0 .

Let µi represent the average intensity color in superpixel
Si: µi = 1

|Si|
P

`2Si
x`. We define the average linkage

distance of two superpixels as ||µi � µj ||2 and the average
linkage similarity as

Link(Si, Sj) = e�
||µi�µj ||2

�2 .

One desirable feature of superpixel algorithms [17, 18]
is to create superpixels of similar sizes. To this aim, we ac-
count for the sizes of superpixels to define their similarity.
Specifically, the latter is chosen to be inversely proportional
to the product of the superpixel sizes. Our definition of su-
perpixel similarity is obtained by combining this feature to
the cut value and the average linkage. More precisely, the
similarity A(Si, Sj) of superpixels Si and Sj is:

A(Si, Sj) =
Cut(Si, Sj)⇥ Link(Si, Sj)

|Si||Sj |
. (1)

We refer to this similarity measure as Penalized Average
Linkage Cut (PALC). Compared to the well known Normal-
ized Cut

⇣
Cut(Si,Sj)
Cut(Si,V) + Cut(Si,Sj)

Cut(Sj ,V)

⌘
similarity ([19]), PALC

has the following advantages:
– In the denominator, PALC metric penalizes stronger to

the pair of large superpixels, and hence the algorithm tends
to combine pairs of superpixels with both having small
sizes.

– The weights w`,`0 in the Cut function are calculated
on the image contour which is more robust to noise than

1x` 2 R3 for RGB or CIELAB images, x` 2 R for gray scale images
2 c` 2 [0, 1], where c` = 1 indicates boundary pixels

2

Concatenate

(a) RCF edges (b) onAVOS edges (c) Edge Flow

(d) Refined RCF edges (e) PALC Segmentation (f) Random Forest Prediction

RCF Edge Refinement

(g) Image

Figure 1. The pipeline of the proposed framework (better seen in color).

computing the weights based on the pixel intensity values
of the original image.

– PALC has an additional term Link(Si, Sj), promoting
superpixels composed of pixels of similar colors.

PALC merging procedure: we compute the PALC sim-
ilarity matrix A = (A(Si, Sj))i,j2{1,...,K} between each
pair of neighboring pixels. The two pixels (later super-
pixels) with the highest PALC similarity are merged, and
the PALC similarity matrix A is updated accordingly. We
proceed with sequentially merging superpixels with highest
PALC similarity and updating A until the total cut (Tcut) is
smaller than a threshold value k. For the given K superpix-
els, we define the total cut by the following:

Tcut =
KX

i=1

X

j 6=i

Cut(Si, Sj).

This sequential procedure is presented in Algorithm 1. Note
that we merge superpixels with the highest PALC similarity
only if the sum of their sizes is smaller than h times that
of the smallest superpixel, denoted by S(1). Otherwise, we
merge S(1) with its most similar superpixel. This feature
helps to delete too small and too distinct superpixels. In our
experiments, we take k = h = 1000,�1 = 0.1,�2 = 50.
Figure 1 (e) shows an output of the PALC segmentation for

the given refined edge (Figure 1 (d)) the and corresponding
image inputs (Figure 1 (g))

Algorithm 1: PALC Superpixels
1 Input: image X , contour C, k,�1,�2, h;
2 S 1 : N ;
3 Compute A (A(Si, Sj))i,j2{1,...,N} from X , C, S using (1) ;
4 while Tcut > k do

5 Choose (i, j) 2 argmaxA(Si, Sj);

6 if
|Si|+|Sj |

|S(1)|
< h then

7 Si Si [Sj ,S S \ {Sj}
8 else

9 i0 2 argmaxA(S(1), Si0);
10 Si0 S(1) [Si0 ,S S \ {S(1)}
11 end

12 Update A;
13 Update Tcut ;
14 end

15 Output: S;

2.3. Prediction using Random Forest

We extract some basic features such as segmentation
size, average flow velocity of the segment and proportion
of pixels that fall into certain segments. We train a random
forest classifier to detect the class of each segment produced

3

by the PALC segmentation. For prediction, we add an addi-
tional class which indicates that the classifier prefers to keep
the onAVOS’s output since the given segment may include
parts from two objects. We only change the output of the
onAVOS algorithm if the prediction confidence of random
forest is higher than p. In our experiments we take p = 0.8.

3. Conclusion and Future Work

We have presented a post-processing framework for
video object segmentation. We have shown that the pro-
posed framework is capable of improving the output of
highly accurate video segmentation algorithms such as on-
AVOS. More importantly, the proposed framework provides
the user an easy to use tool for fast and detailed video anno-
tation and editing. In the future, we plan to replace the un-
supervised PALC segmentation and the random forest clas-
sifier with more advanced deep learning based supervised
segmentation algorithm. At the same time, we aim at de-
creasing the runtime of the refinement edge detector. As a
result, we intend to provide an interactive tool for real-time
detailed video annotation and editing.

References

[1] X. Li and C. C. Loy, “Video object segmentation with
joint re-identification and attention-aware mask prop-
agation,” arXiv:1803.04242, 2018. 1

[2] A. Khoreva, A. Rohrbach, and B. Schiele, “Video
object segmentation with language referring expres-
sions,” arXiv:1803.08006, 2018. 1

[3] Y.-T. Hu, J.-B. Huang, and A. G. Schwing,
“Maskrnn: Instance level video object segmentation,”
arXiv:1803.11187, 2018. 1

[4] P. Voigtlaender and B. Leibe, “Online adaptation of
convolutional neural networks for video object seg-
mentation,” arXiv:1706.09364, 2017. 1, 2

[5] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Gir-
shick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick,
and P. Dollár, “Microsoft coco: Common objects in
context,” arXiv:1405.0312, 2014. 1

[6] A. Benard and M. Gygli, “Interactive video object seg-
mentation in the wild,” arXiv:1801.00269, 2018. 1

[7] K.-K. Maninis, S. Caelles, J. Pont-Tuset, and L. V.
Gool, “Deep extreme cut: From extreme points to ob-
ject segmentation,” arXiv:1711.09081, 2017. 1

[8] Y. Chen, J. Pont-Tuset, A. Montes, and L. V. Gool,
“Blazingly fast video object segmentation with pixel-
wise metric learning,” arXiv:1804.03131, 2018. 1

[9] X. Li, Y. Qi, Z. Wang, K. Chen, Z. Liu, J. Shi, P. Luo,
X. Tang, and C. C. Loy, “Video object segmentation
with re-identification,” arXiv:1708.00197, 2017. 1

[10] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai,
“Richer convolutional features for edge detection,” in
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 5872–5881, 2017. 1, 2

[11] V. Petrosyan, A. Proutiere, A. Aytekin, and Y. Liu,
“Superpixel segmentation vie penalized average link-
age cuts,” in To appear: European Conference on
Computer Vision (ECCV), 2018. 1

[12] L. Breiman, “Random forests,” Machine Learning,
vol. 45, no. 1, pp. 5–32, 2001. 1

[13] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Doso-
vitskiy, and T. Brox, “FlowNet 2.0: Evolution
of optical flow estimation with deep networks,”
arXiv:1612.01925, 2016. 1, 2

[14] J. Canny, “A computational approach to edge detec-
tion,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. PAMI-8, no. 6, pp. 679–698,
1986. 2

[15] P. Dollár and C. L. Zitnick, “Structured forests for fast
edge detection,” in International Conference on Com-
puter Vision (ICCV), pp. 1841–1848, 2013. 2

[16] S. He, R. Lau, W. Liu, Z. Huang, and Q. Yang, “Super-
CNN: A superpixelwise convolutional neural network
for salient object detection,” International Journal of
Computer Vision, vol. 115, no. 3, pp. 330–344, 2015.
2

[17] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
S. Susstrunk, “SLIC superpixels compared to state-
of-the-art superpixel methods,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 34,
no. 11, pp. 2274–2282, 2012. 2

[18] R. Giraud, V. T. Ta, and N. Papadakis, “SCALP: Su-
perpixels with contour adherence using linear path,”
in International Conference on Pattern Recognition
(ICPR), pp. 2374–2379, 2016. 2

[19] J. Shi and J. Malik, “Normalized cuts and image seg-
mentation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, no. 8, pp. 888–905,
2000. 2

4

