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Abstract

We propose a novel solution for semi-supervised and in-

teractive video object segmentation. By the nature of the

problem, available cues (e.g. video frame(s) with object

masks and user annotations) become richer with the inter-

mediate predictions and additional user interactions. To

take advantage of this characteristic, we leverage mem-

ory networks to learn to read relevant information from all

available sources. In the semi-supervised scenario, the past

frames with object masks form an external memory, and the

current frame as the query is segmented using the mask

information in the memory. In the interactive scenario,

the frames given user interactions form an external mem-

ory, and the frames not given user input become the query

to be segmented. Specifically, the query and the memory

are densely matched in the feature space, covering all the

space-time pixel locations in a feed-forward fashion. The

abundant use of the guidance information allows us to bet-

ter handle the challenges such as appearance changes and

occlussions. In DAVIS challenge 2019, our team win 1st

place on the interactive track and 4th place on the semi-

supervised track without online learning, pre-computed re-

sults such as optical flow, and post-processing.

1. Introduction

Video object segmentation is an essential step for many

video editing tasks, which is getting more attention as

videos have become the most popular form of shared me-

dia contents. We tackle the video object segmentation prob-

lem in two scenarios: semi-supervised and interactive. In

the semi-supervised setting, the ground truth mask of the

target object is given in the first frame and the goal is to

estimate the object masks in all other frames. In the in-

teractive mode, the user provides annotations on a selected

frame and an algorithm computes segmentation maps for all

the frames in the video in a batch process. The user can pro-

vide additional annotations and an algorithm need to refine

the object masks of all the frames. In both scenarios, it is a

very challenging task as the appearance of the target object

can change drastically over time and also due to occlusions

and drifts. In addition, in the interactive mode, an algorithm

need to be able to understand user’s intention, at the same

time.

In this paper, we propose a novel DNN system based on

the memory network [16, 8, 6] that computes the spatio-

temporal attention on every pixel in multiple frames of the

video for each pixel in the query image, to decide whether

the pixel belongs to a foreground object or not. With our

framework, there is no restriction on the number of frames

to use and new information can be easily added by putting

them onto the memory. In the semi-supervised scenario,

the past frames with object masks form an external mem-

ory, and the current frame as the query is segmented using

the mask information in the memory [9]. In the interactive

scenario, the frames given user interactions form an exter-

nal memory, and the frames not given user input become the

query to be segmented. This memory update greatly helps

us to address the challenges and enable us to recover from

the failure mode with a aid of user interactions.

In addition to using more temporal information, our net-

work inherently includes non-local spatial pixel matching

mechanism that is well suited for pixel-level estimation

problems. By exploiting rich reference information, our ap-

proach can deal with appearance changes, occlusions, and

drifts much better than the previous methods. Our method

took first place on the interactive track of DAVIS Challenge

on Video Object Segmentation 2019 with with an AUC of

0.783 and a J&F@60s of 0.791. Our method also take

fourth position on the semi-supervised track with a global

mean of 0.752 without the use of online-learning, post-

processing, and optical flow.

2. Algorithm

We consider the video frames with additional informa-

tion (e.g. object masks and user scribbles) as the memory

frames and the video frame to be segmented as the query

frame. Both the memory and the query frames are first en-

coded into pairs of key and value maps through the dedi-

cated deep encoders. Note that the query encoder takes only

an image as the input, while the memory encoder takes the
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Figure 1: Overview of our framework. Our network consists of two encoders each for the memory and the query frame, a

space-time memory read block, and a decoder. The memory encoder (EncM ) takes an RGB frame and the object mask. The

object mask is represented as a probability map (the softmax output is used for estimated object masks). The query encoder

(EncQ) takes the query image as input.

frames with additional information. Each encoder outputs

Key and Value maps. Key is used for addressing. Specif-

ically, similarities between key features of the query and

the memory frames are computed to determine when-and-

where to retrieve relevant memory values from. Therefore,

key is learned to encode visual semantics robust to appear-

ance variations. On the other hand, value stores detailed in-

formation for producing the results. Values from the query

and the memory contain information for somewhat different

purposes. Specifically, value for the query frame is learned

to store detailed appearance information for us to decode ac-

curate object masks. Value for the memory frames is learned

to encode both the visual semantics and the mask informa-

tion about whether each feature belongs to the foreground

or the background.

The keys and values further go through our space-time

memory read block. Every pixel on the key feature maps of

the query and the memory frames is densely matched over

the spatio-temporal space of the video. Relative matching

scores are then used to address the value feature map of the

memory frame, and the corresponding values are combined

to return outputs. Finally, the decoder takes the output of the

read block and reconstructs the mask for the query frame.

2.1. Key and Value Embedding

The query encoder takes the query frame as the input.

The encoder outputs two feature maps – key and value –

through two parallel convolutional layers attached to the

backbone network. The memory encoder has the same

structure except for the inputs. The input to the memory

encoder consists of an RGB frame and all available infor-

mation (the object mask and the user scribbles). The ob-

ject mask is represented as a single channel probability map

between 0 and 1 (the softmax output is used for estimated

masks). The user scribbles are represented as a two channel

binary map where each channel is account for the positive

and the negative scribble.

The inputs are concatenated along the channel dimen-

sion before being fed into the memory encoder. If there are

more than one memory frames, each of them is indepen-

dently embedded into key and value maps. Then, the key

and value maps from different memory frames are stacked

along the temporal dimension. We take ResNet50 [5] as

the backbone network for both the memory and the query

encoder.

2.2. Space­time Memory Read

In the memory read operation (Fig. 2), soft weights are

first computed by measuring the similarities between all

pixels of the query key map and the memory key map. The

similarity matching is performed in a non-local manner by

comparing every space-time locations in the memory key

map with every spatial location in the query key map. Then,

the value of the memory is retrieved by a weighted summa-

tion with the soft weights and it is concatenated with the

query value. This memory read operates for every location

on the query feature map and can be summarized as:

yi =
[

v
Q
i ,

1

Z

∑

∀j

f(kQ
i ,k

M
j )vM

j

]

, (1)

where i and j are the index of the query and the memory

location, Z =
∑

∀j f(k
Q
i ,k

M
j ) is the normalizing factor
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Figure 2: Detailed implementation of the space-time mem-

ory read operation using basic tensor operations as de-

scribed in Sec. 2.2.
⊗

denotes matrix inner-product.

and [·, ·] denotes the concatenation. The similarity function

f is as follows:

f(kQ
i ,k

M
j ) = exp(kQ

i ◦ kM
j ), (2)

where ◦ denotes the dot-product.

2.3. Decoder

The decoder takes the output of the read operation and

reconstructs the current frame’s object mask. We employ

the refinement module used in [10] as the building block of

our decoder.

2.4. Two­stage Training

Our network is first pre-trained on a simulation dataset

generated from static image data. Then, it is further fine-

tuned for real-world videos through the main training.

Note that we trained two individual models each for semi-

supervised and interactive scenario.

Pre-training on images. We take similar strategy [10] to

synthesize training data from static images datasets (salient

object detection – [15, 1], semantic segmentation – [2, 4,

7]).

Main-training on videos. After the pre-training, we use

real video data for the main training. In this step, either

Youtube-VOS [17] or DAVIS-2017 [14] is used, depending

on the target evaluation benchmark.

Scribble synthesis. We use morphological skeletonization

and random walk algorithm to automatically generate real-

istic scribbles. We use a fast implementation of the thinning

algorithm [3] for the skeletonization.

3. Inference

3.1. Semi­supervised mode

In semi-supervised mode, video frames are sequentially

processed starting from the second frame using the ground

truth annotation given in the first frame. During the video

processing, we consider the past frames with object masks

(either given at the first frame or estimated at other frames)

as the memory frames and the current frame without the

object mask as the query frame.

However, writing all previous frames on to the memory

may raise practical issues such as GPU memory overflow

and slow running speed. Instead, we select frames to be put

onto the memory by a simple rule. The first and the latest

previous frame with object masks are the most important

reference information [13, 10, 18]. Therefore, we put these

two frames into the memory by default. For the intermedi-

ate frames, we simply save a new memory frame every N

frames.

3.2. Interactive mode

In interactive mode, every video frames are segmented

in a batch process using information in the memory. We

consider frames given with user interaction as the memory

frames. Therefore, the number of memory frame is grows

with user interactions. Note that, in interactive mode, mem-

ory encoder takes frame image with both the current object

mask and corrective user scribbles.

4. DAVIS Challenge 2019

4.1. Interactive track

In the challenge, each method interacts with a robot

agent up to 8 times and is expected to compute masks within

30 seconds per object for each interaction. The performance

of each method is evaluated using two metrics: area under

the curve (AUC) and J&F score at 60 seconds (J&F@60s).

AUC is designed to measure the overall accuracy during the

evaluation. J&F@60 measures the accuracy with a limited

time budget (60 seconds). Our method took first place on

this challenge with an AUC of 0.783 and a J&F@60s of

0.791, which greatly outperforms the winning entry on the

interactive track of DAVIS Challenge 2018 [11, 12].

4.2. Semi­supervised track

Our team takes fourth position on the semi-supervised

track with a global mean of 0.752. To maximize the speed

of our method, we avoid time-consuming tricks for squeez-

ing out performance. In other words, we did not employ on-

line learning, post-processing, model/scale ensemble. Our

method does not require pre-computed optical flow.
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