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Abstract

This paper proposes key instance selection based on

video saliency covering objectness and dynamics for un-

supervised video object segmentation (UVOS). Our method

takes frames sequentially and extracts object proposals with

corresponding masks for each frame. We link objects ac-

cording to their similarity until the M -th frame and then

assign them unique IDs (i.e., instances). Similarity mea-

sure takes into account multiple properties such as ReID de-

scriptor, expected trajectory, and semantic co-segmentation

result. After M -th frame, we select K IDs based on video

saliency and frequency of appearance; then only these key

IDs are tracked through the remaining frames. Thanks to

these technical contributions, our results are ranked third

on the leaderboard of UVOS DAVIS challenge.

1. Introduction

Given a mask in the first frame, semi-supervised video

object segmentation (SVOS) is a task of generating masks

in the subsequent frames. After the first SVOS chal-

lenge [11], the SVOS has been gradually getting attention.

Also, datasets are continuously updated [12] or newly con-

structed [15]. Recently, interactive video object segmenta-

tion (IVOS) [2] and unsupervised video object segmenta-

tion (UVOS) [3] were introduced as new challenges. This

paper tackles UVOS which does not require any human su-

pervision.

The basic approach of the UVOS is to estimate a mask

of the first frame, then use it to apply conventional SVOS

methods [6, 8]. However, not only is it greatly influenced

by the results of the first frame, it is not guaranteed that

there are all targets in the first frame. To resolve these prob-

lems, we can continuously assign a new ID (i.e., instance)

to an object that satisfies certain criteria. However, this in-

creases not only the number of IDs indiscriminately but also

time complexity. Therefore, it is recommended to fix the

appropriate K, the maximum number of IDs. In this paper,

we propose a method to select K IDs by exploring video

saliency of several frames at the beginning of the video.

*They are equal contributors to this work.
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Figure 1. Segmentation results with respect to K instances on a

‘scooter-black’ video. Top: random instance selection. Bottom:

our key instance selection.

Compared to random K instance selection, our method can

capture main objects well, even in case of small K as shown

in Fig. 1-(a).

The main contributions of this paper are as follows.

Compared to adding new IDs continuously until the end

of the video, our key instance selection approach signifi-

cantly reduces time as well as memory complexity. Also,

our model can capture regions of importance better than

random instance selection. When we measure the similar-

ity between assigned IDs and extracted proposals, we use

all set of positive ReID descriptors for each ID. Unlike con-

ventional methods that use optical flow [5] to handle large

appearance changes in a frame sequence, we use semantic

co-segmentation [9, 13]. Finally, we automatically search

hyperparameters through Meta AI system developed by T-

Brain under scalable environments (e.g., 144 GPUs).

2. Method

Our objective is to assign IDs to the proposals without

additional inputs such as a mask of the first frame. For this,

we use an object pool that manages assigning, adding, and

deleting IDs. Fig. 2 illustrates the overview of the proposed

method.

As a first step, we perform instance segmentation on the

current frame and propagate the masks obtained in the pre-

vious frame. We then extract features and assign IDs to can-

didates that satisfy the criteria of the online tracker linked

with object pool. Here, if the candidate matches the exist-

ing ID in the object pool, we assign the matched ID to the
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Figure 2. Overview of the proposed method.

candidate, and the online tracker is updated; otherwise, we

assign a new ID to the candidate, then this new ID is added

to the object pool. Adding a new ID is performed only up

to the M -th frame. At the M -th frame, K instances among

the accumulated IDs are selected and finally, those selected

IDs are tracked in the remaining frames.

Candidate Generation: Given a frame at time It (t ∈ T ),

we perform instance segmentation to get bounding box and

mask by using Mask R-CNN [7] and DeepLab [4]. Mo-

tion blur or occlusion, which often occurs in videos, can

result in poor segmentation results for certain frames. To

address this issue, we use masks propagated from the pre-

vious frame as mask candidates. Concretely, we utilize

RGMP [9, 13] in our experiments.

ID Assignment: To assign an ID to each candidate, we

compute specific scores by comparing the candidates and

the registered IDs in the object pool. The first score is

Siou(l, n) which is IOU between a mask from ID (l ∈ L)

and a mask of the candidate (n ∈ N ). Here, L refers to

the number of IDs registered in the object pool and N is the

number of candidates. We omit notation time t for simplic-

ity. The second score is Straj(l, n) that measures how far

the candidate is from the predicted bounding box of ID as

Straj(l, n) = 1−min (
dot(~bl,~bn)

αtraj

, 1), (1)

where αtraj is a normalization factor. Also, ~bl and ~bn are

vectors from bounding boxes of ID and candidate, respec-

tively. The third score Sreid(l, n) considers a distance of

Figure 3. Video saliency results. Note that a motorcycle with mo-

tion is only focused among a lot of objects in a scene.

ReID descriptors [10] between ID l and candidate n. Un-

like [6, 8], our method use the nearest ReID descriptor

among the all set of positive ReID descriptors of ID l as

Sreid(l, n) = 1−min (
minj ||dl(j)− rn||

αreid

, 1), (2)

where rn is a ReID descriptor for candidate n and dl(·) are

positive ReID descriptors for ID l. The last score is a rela-

tive ReID score Srel(l, n):

Srel(l, n) =
Sreid(l, n)

maxl Sreid(l, n)
. (3)

Total score is weighted summation of above four scores:

Stotal(l, n) = wiou · Siou(l, n) + wtraj · Straj(l, n)

+wreid · Sreid(l, n) + wrel · Srel(l, n),
(4)

where wiou, wtraj , wreid, and wrel are weight factors of

each term. Finally, we assign ID l to the candidate object as

follows:

n̂ =







argmax
n

Stotal(l, n), if ≥ τc

None, otherwise
, (5)

where τc={1,2} is a threshold value for cutting off object

with low confidence. Before selecting the K instances

(t <= M ) as in Sec. 2, c is 1, and after that c is 2. If one

of candidates is assigned to ID l, then dn̂ is added to pool

of positive ReID descriptors for ID l. Also~bl is updated by

using~bn̂.

Key Instances Selection: Basically, the pipeline men-

tioned above is iterated at each frame. There is ID addi-

tion process at the beginning of the video. Especially, in

the first frame, object candidates with high confidence are

added as new IDs. From the second frame and M -th frame,

new IDs are added when object candidates have high ob-

jectness score and are not overlapped with objects assigned

to existing IDs. After M -th frame, we select at most K IDs.

As selection criteria, we use weighted summation of video

saliency score [14] and frequency of each ID as

Ssel(l) = wsal · Ssal(l) + wfreq · Sfreq(l), (6)
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Measure RWTH Vision Oxford-CASIA SK T-Brain (ours) UVOS-test RWTH Vision 2 ZX VIP VIG UOC-UPC-BSC

Ranking 1 2 3 4 5 6 7 8

Global Mean ↑ 0.564 0.562 0.516 0.504 0.481 0.471 0.448 0.412

J Mean ↑ 0.564 0.535 0.487 0.475 0.460 0.435 0.422 0.379

J Recall ↑ 0.609 0.613 0.551 0.542 0.514 0.490 0.476 0.413

J Decay ↓ 0.015 -0.021 0.040 0.032 0.084 0.035 0.035 0.076

F Mean ↑ 0.594 0.590 0.545 0.533 0.503 0.506 0.474 0.444

F Recall ↑ 0.641 0.632 0.594 0.569 0.538 0.543 0.506 0.473

F Decay ↓ 0.058 0.001 0.077 0.055 0.118 0.067 0.068 0.117

Table 1. Segmentation results on UVOS DAVIS challenge dataset.

where wsal and wfreq are weight factors of each term.

Ssal(l) and Sfreq(l) are computed over frames. Fig. 3

shows effectiveness of video saliency based approach. The

frequency of each ID means the number of each ID’s ap-

pearance up to the M -th frame. Because there are several

IDs that are not connected to any proposal at a certain time

by τ1, Sfreq(l) can vary by ID.

Hyperparameter Search: We perform hyperparameter

search for wiou, wtraj , wreid, wrel, τ1, τ2, wsal and

wfreq on DAVIS validation dataset. Global mean (J&F)

of results is 0.599 and searched weighting factors are

0.12, 0.575, 0.3, 0.0065, 0.55, 0.35, 0.5 and 1.0, respec-

tively.

3. Experiments

We evaluate the proposed method on UVOS DAVIS

challenge dataset [3], which contains 30 videos without a

mask from the first frame in each video. We directly sub-

mit our results to the CodaLab site [1] to get segmenta-

tion results. Evaluation metrics are Region Jaccard (J )

and Boundary F measure (F) for each instance. As shown

in Table. 1, our method achieves the third rank with respect

to Global Mean as well as all the other specific metrics.

Fig. 4 shows qualitative results on DAVIS validation set.

In the first row of Fig. 4, our method well captures black-

swan over time. The proposed method also shows ro-

bust video segmentation results even in the relatively dy-

namic Parkour example. In addition, our method faithfully

works on multiple object segmentation (from the third row

to the last low in Fig. 4). Note that changes in scale (lab-

coat) and appearance (mbike-trick) are handled appropri-

ately by our method.

The proposed key instance selection method is quanti-

tatively compared with random instance selection accord-

ing to the K as shown in Table. 2. Since the proposed

scheme focuses on semantically meaningful regions, it

shows promising results even at a small K.

4. Conclusion

We have presented key instance selection for unsuper-

vised video object segmentation (UVOS). Our method al-

# of IDs 5 10 15 20

Random 0.474 0.529 0.587 0.594

Ours 0.576 0.579 0.591 0.599

Table 2. Global Mean (J&F ) scores on the DAVIS validation

dataset according to the number of IDs. We compare our key in-

stance selection method with random instance selection.

lows maximum K instances to be tracked by considering

video saliency and frequency of appearance. Focusing on

objects that are in the spotlight enables to reduce time com-

plexity. In addition, objects in a frame sequence are linked

by specific scores from ReID descriptor, trajectories, and

co-segmentation result. Finally, we perform hyperparam-

eter search to find out the optimal hyperparameters in our

model by Meta AI system. Our method showed competi-

tive results in UVOS DAVIS challenge.
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Figure 4. Qualitative results on DAVIS validation set that contains a single object and multiple objects.
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