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Abstract

Semi-supervised video object segmentation is a funda-
mental yet challenging problem in computer vision. Deep
learning based methods have achieved promising results by
exploiting the guidance information of past frames. Despite
its superior performance, these works exhibit distinct short-
comings, especially the false predictions caused by simi-
lar appearance instances, even they could readily be distin-
guished with spatial guidance. Moreover, they suffer from
object’s appearance variations and error drifts. In order
to mitigate the shortcomings, we propose Spatial Consis-
tent Memory Network with an enhanced segmentation head.
We introduce a spatial constraint module that takes the
previous prediction to generate a spatial prior for current
frame, which helps to disambiguate appearance confusion
and eliminate false predictions. Additionally, a segmenta-
tion head with Atrous Spatial Pyramid Pooling(ASPP) mod-
ule and a refinement module are adopted to handle scale
variance and improve segmentation quality. Furthermore,
we propose a training strategy to minimize the gap be-
tween training and testing. Finally, the proposed method
can achieve the J&F mean score of 84.1% for the DAVIS
semi-supervised VOS test-challenge dataset.

1. Introduction

Video Object Segmentation (VOS) applies widely in
video editing, video composition, autonomous driving, etc.
Given a video and the ground truth object mask of the
first frame, semi-supervised VOS predicts the segmentation
masks of the objects specified by the ground truth mask in
all the following frames. The task is challenging due to the
appearance variations, occlusions and error drifts. Further-
more, the target object may disappears in some frames of
the video and may confuse with similar instances of same
categories.

Many VOS methods are proposed over the past few years

for this challenge. In general, they can be divided into
propagation-based methods and matching-based methods.
Propagation-based methods[4, 10, 8] rely on the segmenta-
tion mask from the previous frames. MaskTrack[4] predicts
mask with the guidance of the previous predicted mask, and
it can train from static images which are deformed to sim-
ulate videos frames. These methods suffer from occlusions
and fast motions between sequential frames. Matching-
based methods[2, 7, 11] learn pixel-level features via pixel-
level matching. But they fail when the appearance of objects
change dramatically. STM[3] further develops the match-
ing based method by leveraging a memory network to read
relevant information from all the past frames. STM per-
forms dense matching in the feature space to retrieve useful
information, which allows it to handle challenges such as
appearance changes and occlusions. However, the match-
ing based mechanism does not take spatial consistency into
account. Model sometimes suffers from false predictions
when there are similar objects entering into view. Further
more, the model may performs worse in case of large scale
variances.

We extend the STM model with a spatial constraint mod-
ule and an enhanced segmentation head. In segmentation
head, we exploit a ASPP[1] module to handle scale vari-
ability in videos. A refinement module inspired by seman-
tic segmentation method BASNet[6] is adopted to boost the
performance especially at the boundary. The spatial con-
straint module is similar to [13] but performed on the final
embedding rather than the key feature map and we learn
the spatial prior directly rather than the weight matrix W
and bias matrix b. It takes the previous predict and current
embedding generated by the encoder and ASPP module, to
learn a spatial prior map. This spatial prior map serves as
a rough constraint for guiding the model to filter out con-
fusing instances of similar appearance. Finally, we adopt a
similar training strategy as [3], but make improvements to
reduce the gap between training and testing.
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Figure 1. Framework of the proposed method. The previous mask is used to guide the predict of current frame. In test phase, previous
predict is used.
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Figure 2. The proposed spatial constraint module

2. Approach

Our approach is developed base on the STM[3] frame-
work. The structure is illustrated in Fig.1. We introduce the
proposed spatial constraint module in Sec.2.1. The detail
of segmentation head is explained in Sec.2.2. Finally, we
introduce the training strategy in Sec.2.3.

2.1. Spatial Constraint Module

We introduce a spatial constraint module(Fig.2) to en-
sure the spatial consistency between adjacent frames and to
disambiguate appearance confusion and eliminate false pre-
dictions caused by similar instances of same category. The
predicted mask of previous frame is a 0-1 mask in shape of
H × W . It is concatenated with current frame embedding
(H×W×C) to get a feature map of shape H×W×(C+1).
A convolution layer with kernel size 3× 3 and the sigmoid
function are adopted to produce a spatial prior, which is a
feature map of shape H ×W . The prior are multiplied with
the current frame embedding.

We visualized some frames and the corresponding spa-
tial priors in Fig.3. The spatial priors roughly capture the
location of specific objects.
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Figure 3. Visualization of the spatial constraint module. The val-
ues of prior are mapped from 0-1 to 0-255 for better visualization

2.2. Segmentation Head

The spatial constraint module aims to correctly capture
the target objects, but it is not enough to get a high-quality
results. As the objects come in various sizes in multi-
object cases and they often change in size during sequen-
tial frames, previous methods suffer from the scale vari-
ance problem. In this section we propose our segmenta-
tion head to tackle this problem and improve the segmenta-
tion quality as illustrated in Fig.4. Inspired by the general
semantic segmentation, we apply Atrous Spatial Pyramid
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Figure 4. Structure of the proposed decoder.

Figure 5. Sampling strategy in training stage

Pooling(ASPP)[1] module after the memory read operation
to make different receptive fields. We use three parallel
dilated convolution layers and set the dilation rate as 2, 4
and 8 to adapt to the encoder. Then a decoder is attached
as the upsampling operation with residual skip connection
proposed in [6]. We apply soft aggregation[3] to merge the
multi-object prediction and the loss function is Cross En-
tropy Loss.

To further boost the performance especially at the bound-
ary, we apply a refine module based on the encoder-decoder
structure. We take the feature map before soft aggregation
as the input of the refine module. And we re-downsample
it with 3x3 convolution layer and ReLU function, then it
is upsampled to the origin resolution and merged by soft
aggregation again. Cross Entropy Loss and IoU Loss are
applied as the loss function for the refined result.

2.3. Training Strategy

Due to the limitation of GPU memory, for an iteration we
select three frames from a certain video[3]. we additionally
sample the ground truth masks of the previous frame for
last two frames to serve as a prior, as illustrated in Fig.5.
Predictions and losses are only computed for the last two
frames, while the first frame serves as reference frame. To
reduce the gap between training and testing, we decrease
the maximum skip number between sampled frames in the
last few epochs. Thus we can use the predicted mask for
memory network and spatial constraint module.

3. Experiments

We evaluate our method on the DAVIS 2017 dataset[5].

3.1. Training Details

We follow the two stage training settings in [3]. The
same static image datasets are used for pretraining. In main
training stage, both DAVIS and Youtube-VOS 2019[9] are
used. During pretraining, 384 × 384 patches are randomly
cropped from images. In main training, we randomly re-
size the shortest edge of image to [384, 1080] and crop a
640 × 384 patch around all the maximum bounding box of
all instances in three frames. Other data augmentation like
flip, affine transform etc. are also applied.

3.2. Experimental Results

As shown in Table 1, our proposed method finally
achieves 84.1 J&F score on the DAVIS test-challenge and
ranks the first place in the Semi-supervised video object
segmentation track. The performance of our method sur-
passes the winner in DAVIS 2019 by 7.4.

3.3. Ablation Study

In this section we study the contribution of our proposed
method and how we achieve the final result as shown in
Table 2. Following experiments are conducted on DAVIS
2017 test-dev and J&F score is reported. The baseline is
the original space-time memory network and our reimple-
mentation with resnet-50 backbone achieves 72.2 on DAVIS
2017 test-dev.

We apply a powerful ResNeST-101[12] backbone, which
achieves SOTA performance in many other computer vision
tasks. And in our experiment, it brings an improvement
of 2.9. Then we demonstrate the effectiveness of our pro-
posed segmentation head, spatial constraint module and the
training strategy. Based on a strong baseline of 75.1, it still
achieves the J&F score of 79.7, with a significant improve-
ment of 2.8, 1.0 and 0.8 respectively, surpassing the winner
in DAVIS 2019 and all other existing methods without bells
and whistles.

Then we further boost the performance with other tricks.
We apply flip and multi-scale testing with a gain of 1.5. We
apply online finetune which is widely used in early methods
and then ensemble these methods. Finally we achieve 83.2
on DAVIS test-dev.

4. Conclusion

In this paper, we propose Spatial Constraint Memory
Network for semi-supervised video object segmentation in-
cluding a spatial constraint module, a enhanced segmen-
tation head and a new training strategy. Our approach
achieves J&F score of 84.1 on DAVIS test-challenge, rank-
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Team Global Mean J Mean J Recall J Decay F Mean F Recall F Decay
Ours 84.1 81.5 89.1 14.2 86.7 92.9 16.1

ReLER 83.8 81.1 88.4 18.1 86.5 93.3 17.8
Hongje 79.5 77.0 85.7 14.9 82.1 89.6 17.1

HCMUS-UD-NII-UIUC 79.3 76.5 85.1 10.1 82.1 90.7 12.0
DSVOS 76.9 74.4 82.7 20.5 79.5 86.9 23.6
Vltanh 76.0 73.3 81.9 16.6 78.7 87.2 19.6

Bytedance 72.2 69.8 76.7 20.7 74.6 83.0 23.0
DeepDream 64.9 62.5 72.1 24.2 67.3 76.7 27.7

Table 1. Final results on DAVIS 2020 semi-supervised challenge

Methods Global Mean Boost
Baseline(reimplementation STM) 72.2 -

+ResNeST101 Backbone 75.1 +2.9
+Segmentation Head 77.9 +2.8
+Spatial Constraint 78.9 +1.0
+Training Strategy 79.7 +0.8

+Flip and Multi-scale Testing 81.2 +1.5
+Online Finetune and Model Ensemble 83.2 +2.0

Table 2. Ablation study on DAVIS test-dev

ing the first place on DAVIS 2020 semi-supervised video
object segmentation challenge.
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