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Abstract

In this paper, we investigate the principles of embedding
learning between the given reference and the predicted se-
quence to tackle the challenging semi-supervised video ob-
ject segmentation. Unlike previous practices that only ex-
plore embedding learning using pixels from foreground ob-
ject (s), we consider background should be treated equally.
Thus, we propose a Collaborative video object segmen-
tation by multi-scale Foreground-Background Integration
(CFBI+) approach, which is an enhanced version of our
previous CFBI [13]. Our CFBI+ implicitly imposes the fea-
ture embedding from the target foreground object and its
corresponding background to be contrastive, promoting the
segmentation results accordingly. With the feature embed-
ding from both foreground and background, our CFBI+ per-
forms the matching process between the reference and the
predicted sequence using a multi-scale strategy, making the
CFBI+ robust to various object scales. In our experiments
and the DAVIS-2020 Challenge, we follow a standard train-
ing setting, i.e., pre-training on COCO and fine-tuning on
Youtube-VOS 2019 and DAVIS 2017. Without any bells and
whistles, our method achieves new state-of-the-art J&F
performance of 82.8% and 77.5% on Validation and Testing
sets of DAVIS 2017 respectively, while keeping an efficient
run-time (about 5FPS on 480P videos). By simply apply-
ing multi-scale & flip strategies during the inference stage,
our single model achieves 81.9% on Testing and 82.2% on
Challenge of DAVIS 2017.

1. Introduction
Video Object Segmentation (VOS) is a fundamental task

in computer vision with many potential applications, in-
cluding interactive video editing [5] and augmented real-
ity [6]. In this paper, we focus on semi-supervised VOS,
which targets on segmenting a particular object instance
across the entire video sequence based on the object mask
given at the first frame.

Early VOS works (e.g., [4]) rely on fine-tuning with the
first frame in evaluation, which heavily slows down the in-
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Figure 1: CI means collaborative integration. There are two fore-
ground sheep (pink and blue) in the video. In the top line, the con-
tempt of background matching leads to a confusion of the predic-
tion of sheep. In the bottom line, we relieve the confusion problem
by introducing background matching (dot-line arrow).

ference speed. Recent works (e.g., [10, 7]) aim to avoid
fine-tuning and achieve better run-time. In these works,
STMVOS [7] introduces memory networks to learn to read
sequence information and outperforms all the fine-tuning
based methods. However, STMVOS relies on simulating
extensive frame sequences using many large image datasets
(e.g., [3]) for training. The simulated data significantly
boosts the performance but makes the training procedure
elaborate. Without simulated data, FEELVOS [10] adopts a
semantic pixel-wise embedding together with a global (be-
tween the first and current frames) and a local (between the
previous and current frames) matching mechanism to guide
the prediction. The matching mechanism is simple and fast,
but the performance is not comparable with STMVOS.

Even though the efforts mentioned above have made sig-
nificant progress, current works pay little attention to the
feature embedding of background in videos and only focus
on exploring robust matching strategies for the foreground
object (s). Intuitively, it is easy to extract the foreground
from a video when precisely removing all the background.
Moreover, modern video scenes commonly focus on many
similar objects, such as the cars in car racing, the people
in a conference, and the animals on a farm. For these cases,
the contempt of integrating foreground and background em-
beddings traps VOS in an unexpected background confu-
sion problem. As shown in Fig. 1, if we focus on only the
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Figure 2: An overview of the single scale version of CFBI+, i.e., CFBI. F-G denotes Foreground-Background. We use red and blue to
indicate foreground and background separately. The deeper the red or blue color, the higher the confidence. Given the first frame, previous
frame, and current frame, we firstly extract their pixel-wise embedding by using a backbone network. Second, we separate the first and
previous frame embeddings into the foreground and background pixels based on their masks. After that, we use foreground-background
pixel-level matching and instance-level attention to guide our collaborative ensembler network to generate an accurate prediction.

foreground matching like [10], a similar and same kind of
object (sheep here) in the background is easy to confuse the
prediction of the foreground object. Such an observation
motivates us that the background should be equally treated
compared with the foreground so that better feature embed-
ding can be learned to relieve the background confusion.

Based on the above motivation, our recent work pro-
posed a novel framework for Collaborative video ob-
ject segmentation by Foreground-Background Integration
(CFBI) [13]. Different from the above methods, we not
only extract the embedding and do match for the fore-
ground target in the reference frame, but also for the back-
ground region. Besides, our framework extracts two types
of embedding (i.e., pixel-level and instance-level embed-
ding) for each video frame to cover different scales of fea-
tures. Similar to FEELVOS, we employ pixel-level embed-
ding to match all the details of objects with the same global
and local mechanism. However, the pixel-level matching is
not sufficient and robust to match those objects with larger
scales and may bring unexpected noises due to the pixel-
wise diversity. Thus we introduce instance-level embed-
ding to help the segmentation of large-scale objects by us-
ing attention mechanisms. The strategies proposed above
can significantly improve the quality of the learned collab-
orative embeddings for conducting VOS while keeping the
network simple yet effective. Our CFBI (single model re-
sult) ranked 3rd in both Track 1 and 2 of the 2nd Large-scale
Video Object Segmentation Challenge [12, 2].

In this paper, we develop an enhanced version of CFBI,
i.e., Collaborative video object segmentation by Multi-scale
Foreground-Background Integration (CFBI+), to improve

the robustness of predicting objects with different scales.
Instead of doing pixel-level matching on a single scale as
CFBI, our CFBI+ matches pixels on three different spa-
tial scales. Besides, the higher the resolution of scale, the
less the channels of feature we use to compute a matching
distance. Hence, CFBI+ is able to outperform CFBI while
keeping a comparable inference speed.

Without any bells and whistles, CFBI+ achieves new
state-of-the-art J&F results of 82.8% and 77.5% on Val-
idation and Testing sets of DAVIS-2017 [8] respectively,
while keeping an efficient run-time (about 5FPS). By
applying multi-scale & flip strategies during the inference
stage, our single model achieves 81.9% on Testing and
82.2% on Challenge. The latter significantly outperforms
the winner (76.7%) [1] of DAVIS Challenge last year.

2. Method
2.1. Revisiting CFBI: A Single-Scale Version

To overcome the problems raised by the background
confusion problem as well as promote the robustness of dif-
ferent scales of objects, we proposed CFBI, as shown in
Figure 2. First, beyond learning feature embedding from
foreground pixels, our CFBI additional consider the em-
bedding learning from background pixels for collaboration.
Such a learning scheme will encourage the feature embed-
ding from the target object and its corresponding back-
ground to be contrastive, promoting the segmentation re-
sults accordingly. Second, with the collaboration of pix-
els from the foreground and background, we further con-
duct the embedding matching from both pixel-level and
instance-level. For the pixel-level matching, we improve the



robustness of the local matching under various object mov-
ing rates. For the instance-level matching, we design an
instance-level attention mechanism, which can efficiently
augment the pixel-level matching. More details can be
found in [13], and we only show some keys to the collabo-
rative pixel-level matching in this paper.

2.1.1 Collaborative Pixel-level Matching

For the pixel-level matching, we adopt a global and lo-
cal matching mechanism similar to [10] for introducing the
guided information from the first and previous frames, re-
spectively.

To incorporate background information, we firstly re-
design the pixel distance of [10] to further distinguish the
foreground and background. Let Bt and Ft denote the pixel
sets of background and all the foreground objects of frame
t, respectively. We define a new distance between pixel p of
the current frame T and pixel q of frame t in terms of their
corresponding embedding, ep and eq , by

Dt(p, q) =

{
1− 2

1+exp(||ep−eq||2+bB) if q ∈ Bt

1− 2
1+exp(||ep−eq||2+bF ) if q ∈ Ft

, (1)

where bB and bF are trainable background bias and fore-
ground bias. We introduce these two biases to make our
model be able further to learn the difference between fore-
ground distance and background distance.
Foreground-Background Global Matching. Let Pt de-
note the set of all pixels (with a stride of 4) at time t and
Pt,o ⊆ Pt is the set of pixels at time t which belongs to
the foreground object o. The global foreground matching
between one pixel p of the current frame T and the pixels
of the first reference frame (i.e., t = 1) is,

GT,o(p) = min
q∈P1,o

D1(p, q). (2)

Similarly, let Pt,o = Pt\Pt,o denote the set of relative
background pixels of object o at time t, and the global back-
ground matching is,

GT,o(p) = min
q∈P1,o

D1(p, q). (3)

Foreground-Background Multi-Local Matching. We
propose to apply the local matching mechanism on different
scales and let the network learn how to select an appropri-
ate local scale, which makes our framework more robust to
various moving rates of objects.

Formally, let K = {k1, k2, ..., kn} denote all the neigh-
borhood sizes and H(p, k) denote the neighborhood set of
pixels that are at most k pixels away from p in both x and
y directions, our foreground multi-local matching between
the current frame T and its previous frame T − 1 is

MLT,o(p,K) = {LT,o(p, k1), LT,o(p, k2), ..., LT,o(p, kn)},
(4)

where

LT,o(p, k) =

{
minq∈Pp,k

T−1,o
DT−1(p, q) if Pp,k

T−1,o 6= ∅
1 otherwise

.

(5)
Here, Pp,k

T−1,o := PT−1,o ∩ H(p, k) denotes the pixels in
the local window (or neighborhood). And our background
multi-local matching is

MLT,o(p,K) = {LT,o(p, k1), LT,o(p, k2), ..., LT,o(p, kn)},
(6)

where

LT,o(p, k) =

{
min

q∈Pp,k
T−1,o

DT−1(p, q) if Pp,k

T−1,o 6= ∅

1 otherwise
.

(7)
Here similarly, Pp,k

T−1,o := PT−1,o ∩H(p, k).

2.2. From CFBI to CFBI+

To further improve the robustness of predicting objects
with different scales, we develop a multi-scale version of
CFBI, i.e., CFBI+. Instead of doing pixel-level matching
on a single scale (with a stride of 4) like CFBI, our CFBI+
matches pixels on three different spatial scales (with a stride
of 4, 8, 16). Besides, the higher the resolution of scale, the
less the channels of feature we use to compute a matching
distance. In detail, the channels are 16, 32, and 64 for the
scales with a stride of 4, 8, and 16, respectively. Hence,
CFBI+ is able to outperform CFBI, while keeping a compa-
rable inference speed (about 5 FPS).

3. Experiment
We evaluate our method on Validation, Testing and Chal-

lenge of DAVIS-2017 [8]. The evaluation metric is the J
score, calculated as the average IoU between the prediction
and the ground truth mask, and the F score, calculated as
an average boundary similarity measure between the bound-
ary of the prediction and the ground truth, and their average
value (J&F).

We follow the same setting in CFBI [13] to train our
model only on public datasets. In details, we firstly pre-
train our backbone on ImageNet [9] and COCO [3]. And
then, we finetune our full model on YouTube-VOS [11] and
DAVIS-2017 in an end-to-end way. When evaluating on
Validation, we train with Train of DAVIS-2017. When eval-
uating on Testing or Challenge, we train with both Train and
Validation of DAVIS-2017.

3.1. Single-Scale

Our single-scale version, i.e., CFBI, achieves 81.9% and
74.8% on Validation and Testing of DAVIS-2017, respec-
tively. Ablation Study. As shown in Table 1, we first



P I Avg J F

X X 74.9 72.1 77.7
X 73.0 69.9 76.0

X 72.3 69.1 75.4
70.9 68.2 73.6

Table 1: Ablation of background embedding on Validation of
DAVIS-2017 (J&F). P and I separately denote the pixel-level
matching and instance-level attention.

analyze the influence of removing the background embed-
ding while keeping the foreground only. Without any back-
ground mechanisms, the result of our method heavily drops
from 74.9% to 70.9%. This result shows that it is significant
to embed both foreground and background features collab-
oratively. More analyses and the ablation study of other
proposed components can be found in [13].

3.2. Multi-Scale

By introducing a multi-scale strategy for pixel-level
matching, our CFBI+ (single model) achieves 82.8% and
77.5% on Validation and Testing of DAVIS-2017 respec-
tively. In other words, we achieve a new state-of-the-art
performance on DAVIS-2017 without any post-processing.
If we apply a multi-scale and flip strategy in evaluation, we
can boost our single model result to 81.9% on Testing, and
achieve 82.2% on Challenge, which significantly outper-
forms the winner (OSS [1], 76.7%) of DAVIS-2019 Chal-
lenge in last year.

4. Conclusion
We propose a novel framework for video object segmen-

tation by combining collaborative foreground-background
integration with multi-scale matching and achieves new
state-of-the-art results on DAVIS-2017. We hope CFBI and
CFBI+ will serve as a solid baseline and help ease the future
research of VOS and related areas.
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