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Abstract

Semi-supervised video object segmentation (VOS) is the
task of predicting a target object in a video when the ground
truth segmentation mask of the target object is given in the
first frame. Recently, space-time memory networks (STM)
have received significant attention as a promising solution
for semi-supervised VOS. In STM, the current frame is con-
sidered to be the query frame for which the target is to
be predicted, whereas the past (already predicted) frames
are used as memory frames. When the standard “vanilla”
STM is applied to VOS, however, an important point is over-
looked. The solution (i.e., STM) is non-local but the problem
(i.e., VOS) is predominantly local. Specifically, STM is non-
local since it uses a correlation map to consider all pos-
sible correspondences between all parts of the query and
memory frames. However, VOS is local since the target ob-
ject in the query frame usually appears where the target
was in the memory frames. Thus, entire images do not need
to be searched using STM, but rather the local neighbor-
hood where the target appeared in memory frames should
be searched in VOS. To solve the mismatch between STM
and VOS, we propose a new network named the kernelized
memory network (KMN). Further, before being trained on
real videos, our KMN is pre-trained on static images as
in previous works. Unlike the previous works, however, we
used the Hide-and-Seek strategy in pre-training to obtain
the best possible results in handling occlusions and segment
boundary extraction. Our approach earned us third place
on the semi-supervised track in the 2020 DAVIS challenge.

1. Introduction

Video object segmentation (VOS) is the task of tracking
target objects at the pixel level in a video, and is consid-
ered to be one of the most challenging problems in com-
puter vision. VOS can be divided into two categories: semi-
supervised VOS and unsupervised VOS. In semi-supervised
VOS, the ground truth (GT) segmentation mask is given in
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Figure 1. Illustration of KMN. In the vanilla STM, two cars in the
query frame are matched with a car in the memory frame due to
the non-local matching between the query and memory. The car
in the middle is the correct match, while the car on the left is an
incorrect match. In KMN, however, non-local matching between
the query and memory is controlled by Gaussian kernel and only
the car in the middle of the query frame is matched with the car in
the memory. The width of the green curve indicates the strength of
key matching.

the first frame and the segmentation mask must be predicted
for the subsequent frames. In unsupervised VOS, however,
no GT segmentation mask is given, and the task is to find
and segment the main object in the video. This paper con-
siders semi-supervised VOS.

Space-time memory networks (STM) [7] have recently
received significant attention as a promising solution to
semi-supervised VOS. The basic idea behind the application
of STM to VOS is to use the intermediate frames between
the first frame and current frame. This approach, however,
overlooks the important point that the solution (i.e., STM)
is non-local, but the problem (i.e., VOS) is predominantly
local, as illustrated in Fig. 1. Specifically, STM is based
on non-local matching between the query frame and mem-
ory frames. On the other hand, in VOS, the target object in
the query frame usually appears in the local neighborhood
of the target’s appearance in the memory frames. To solve
the problem arising from the use of the standard “vanilla”
STM for VOS, this paper proposes a new memory network
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Figure 2. Overall architecture of our kernelized memory network (KMN). We follow the frameworks of [7], and propose a new operation
of kernelized memory read. The numbers next to the block indicate the spatial size and channel dimension.

named the kernelized memory network (KMN). In KMN,
the Gaussian kernel is employed to reduce the degree of
non-localness of the STM and improve the effectiveness of
the memory network for VOS.

Further, before being trained on real videos, our KMN is
pre-trained on static images as in some previous works. In
particular, multiple frames based on a random affine trans-
form were used in [14, 7]. Unlike the training process in
the previous works, however, we employ the Hide-and-Seek
strategy during pre-training to obtain the best possible re-
sults in handling occlusions and segment boundary extrac-
tion. Hide-and-Seek [11] was initially developed for weakly
supervised object localization, but we utilize it to pre-train
KMN. This provides two key benefits. First, when used in
the pre-training of KMN, Hide-and-Seek achieves segmen-
tation results that are considerably robust to occlusion. To
the best of our knowledge, this is the first time that Hide-
and-Seek has been applied to VOS in order to make the
predictions robust to occlusion. Second, Hide-and-Seek is
used to refine the boundary of the object segment. Since
most of the ground truths in segmentation datasets contain
unclear and incorrect boundaries, it is fairly challenging to
predict accurate boundaries in VOS. The boundaries cre-
ated by Hide-and-Seek, however, are clear and accurate, and
Hide-and-Seek appears to provide instructive supervision
for clear and precise cuts for objects, as shown in Fig. 4.
Our approach earned us third place on the semi-supervised
track in the 2020 DAVIS challenge with a JM&FM score
of 79.5%.

2. Kernelized Memory Network (KMN)
2.1. Architecture

The overall architecture of KMN is fairly similar to that
of STM [7] and is illustrated in Fig. 2. Compared with STM
[7], the primary difference in KMN lies in the memory read
operation. We recommend that readers refer to [7] for more
details about the overall frameworks of key and value em-
bedding methods.

In the memory read of a vanilla STM [7],
only Query-to-Memory matching is conducted.
In the kernelized memory read of KMN, how-
ever, both Query-to-Memory matching and
Memory-to-Query matching are conducted. The
detailed explanation about kernelized memory read is
provided in the subsequent subsections.

2.2. Kernelized Memory Read

In the memory read operation of STM [7], the non-local
correlation map c(p,q) is generated by using the embedded
key of the memory kM =

{
kM (p)

}
∈ RT×H×W×C/8 and

query kQ =
{
kQ(q)

}
∈ RH×W×C/8 as follows:

c (p,q) = kM (p)kQ(q)> (1)

where H , W , and C are the height, width, and channel size
of res4 [4], respectively. p = [pt, py, px] and q = [qy, qx]
indicate the grid cell position of the key features. Then the
query at position q retrieves the corresponding value from
the memory using the correlation map by

r (q) =
∑
p

exp (c (p,q))∑
p
exp (c (p,q))

vM (p) (2)
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Figure 3. Kernelized memory read operation.

where vM =
{
vM (p)

}
∈ RT×H×W×C/2 is the embedded

value of the memory. Then the retrieved value r(q), which
is of size H ×W × C/2, is concatenated with the query
value vQ ∈ RH×W×C/2, and they are fed to the decoder.

However, the vanilla memory read operation has two
inherent problems. First, every grid in the query frame
searches the memory frames for a target object, but not vice
versa. That is, there is only Query-to-Memory match-
ing in the STM. Thus, when multiple objects in the query
frame look like a target object, all of them can be matched
with the same target object in the memory frames. Second,
the non-local matching in the STM might be ineffective in
VOS since it overlooks the fact that the target object in the
query should appear where it was in the memory frames.

To solve these problems, we propose a kernelized mem-
ory read operation using 2D Gaussian kernels. First, the
non-local correlation map c (p,q) = kM (p)kQ(q)> be-
tween the query and the memory is computed as in the
STM. Second, for each grid p in the memory frames, the
best-matched query position q̂ (p) = [q̂y (p) , q̂x (p)] is
searched by

q̂ (p) = argmax
q

c (p,q) (3)

and it is the Memory-to-Query matching. Third, a 2D
Gaussian kernel g = {g (p,q)} ∈ RT×H×W×H×W that is
centered on the q̂ (p) is computed by

g (p,q) = exp

(
− (qy − q̂y (p))2 + (qx − q̂x (p))2

2σ2

)
(4)

where σ is the standard deviation. Using the Gaussian ker-
nels, value in the memory is retrieved in a local manner by

rk (q) =
∑
p

exp
(
c (p,q) /

√
d
)
g (p,q)∑

p
exp

(
c (p,q) /

√
d
)
g (p,q)

vM (p) (5)
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Figure 4. A pair of images generated during pre-training using
Hide-and-Seek. The mask indicated in red denotes the ground truth
of the target object.

where d is the channel size of the key. This is
Query-to-Memory matching. Here, 1√

d
is a scaling fac-

tor taken from [12] and it aims to prevent the argument in
the softmax from growing large in magnitude, or equiva-
lently preventing the softmax from becoming saturated. The
kernelized memory read operation is summarized in Fig. 3.

Note that our kernelized memory read operation is in-
spired by the kernel soft argmax [5], but its applica-
tion and objective are completely different. The kernel
soft argmax [5] applies a kernel to the memory feature
(Query-to-Memory) to simply serve as a gradient prop-
agatable argmax function. If the kernel in [5] was directly
applied to the example in Fig. 1, the kernel would be ap-
plied to the memory feature (the first column) in the figure
and VOS would fail as in the STM [7].

3. Pre-training by Hide-and-Seek
As in the previous works [8, 14, 7], our KMN is pre-

trained using static image datasets that include foreground
object masks [2, 6, 3, 10, 1, 13]. The basic idea of pre-
training a VOS network is to generate a video with fore-
ground object masks synthetically from a single static im-
age. Applying random affine transforms to a static image
and the corresponding object mask can yield a synthetic
video and the video can be used to pre-train a VOS network.
The problem with synthetic generation of a video from a
static image, however, is that the occlusion of the target ob-
ject does not occur in a generated video. Thus, the simu-
lated video cannot train the pre-trained KMN to cope with
the common occlusion in the VOS. To solve this problem,
Hide-and-Seek is used to generate a video with occlusions
synthetically. Some patches are randomly hidden or blocked
and the occlusions are synthetically generated in training
samples. Hide-and-Seek can pre-train KMN to be robust to
the common occlusion in VOS. This idea is illustrated in
Fig. 4.

Further, it should be noted that most of the segmenta-
tion datasets contain inaccurate masks (GTs) near the ob-
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ject boundaries. An example is illustrated in Fig. 4; in this
figure, the ground truth mask contains incorrect boundaries
on the head of the running person. However, Hide-and-Seek
creates a clear object boundary as represented by the pink
line in Fig. 4.

4. Implementation Details
4.1. Training

For training the KMN, both the DAVIS17 [ [9] and
Youtube-VOS [15] training sets are used, and our training
strategy is identical to that adopted in STM [7], with the
difference that we use Hide-and-Seek during pre-training.

During the pre-training, we generate three frames using
a single static image by randomly applying rotation, flip,
color jittering, and cropping, similar to [14, 7]. We then use
the Hide-and-Seek framework, as described in Section 3.
We first divide the image into a 24 × 24 grid, which is the
same spatial size as the key feature. Each cell in the grid has
a uniform probability to be hidden respectively. We gradu-
ally increase the probability from 0 to 0.5.

Note that the Gaussian kernel was not applied during
training. Since the argmax function, which determines the
center point of the Gaussian kernel, is a discrete function,
the error of the argmax cannot be propagated backward
during training. Thus, if the Gaussian kernel is used dur-
ing training, it attempts to optimize networks based on the
incorrectly selected feature by argmax, and it leads to per-
formance degradation.

4.2. Inference

The inference details in our approach are also almost
similar to [7], except for the addition of the Gaussian ker-
nel. We empirically set the hyper-parameter of σ in (4) to
6.

Finally, we achieve JM&FM score of 78.3% in a 600p
resolution video and 79.5% in an ensemble of 320p, 480p,
and 600p resolution videos on the DAVIS test-challenge set.
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