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Abstract

In this paper, we propose Depth-aware Space-Time
Memory (D-STM) Network for semi-supervised Video Ob-
ject Segmentation (VOS). Space-Time Memory (STM) Net-
work learns the feature embedding of the foreground ob-
jects and archives promising results in VOS. However, STM
focus on the appearances of objects without explicitly con-
sidering the spatial location, which leads to poor segmen-
tation results when objects having similar appearances. To
solve this problem, we estimate the depth maps from a video
sequence to alleviate the ambiguity of objects with similar
appearances. Besides, an ASPP module is incorporated to
increase the semantic receptive field on different scales. To-
gether with the multi-scale ensemble, the proposed D-STM
archives a J&F score of 76.9% in the 2020 DAVIS chal-
lenge on semi-supervised VOS.

1. Introduction
Video Object Segmentation (VOS) is the task of auto-

matically generating accurate and consistent pixel masks for
objects in a video sequence. It is a fundamental task with
many potential applications, including video editing [13],
autonomous driving [5], and 3D reconstruction [14]. In this
paper, we focus on the semi-supervised VOS, which aims to
segment particular object instances across the entire video
sequence given the first frame ground truth annotations. It
is a very challenging task due to the occlusions, drifts, and
appearance change of the target objects over time.

Many VOS methods have been proposed in the past few
years. Several methods [9, 11] rely on temporal continuity
and propagate the segmentation mask from the first frame to
the next. However, these methods have difficulties in han-
dling occlusions and drifts due to the error accumulation. To
solve this issue, STM [10] introduces the space-time mem-
ory that encodes the appearances of target objects to deal
with appearance changes, occlusions, and drifts. However,
STM pays little attention to the spatial location and only fo-
cuses on exploring feature matching for the target objects,

which fails to distinguish objects with similar appearances.
To solve this problem, we take the spatial locations of ob-

jects into account. Intuitively, it is easy to distinguish sim-
ilar objects with different spatial locations. To this aim, we
present Depth-aware Space-Time Memory (D-STM) Net-
work that introduces the depth maps to VOS (Figure 1).
Specifically, we use [7] to estimate depth maps from video
sequences and feed both the frames and depth maps into
space-time memory networks. To further improve the seg-
mentation accuracy, we introduce Lovász Loss [2] and re-
place the ResNet with ResNeSt [16]. Besides, the atrous
spatial pyramid pooling (ASPP) [3] is employed to robustly
segment objects at multiple scales. Experimental results on
the DAVIS test-dev set indicate that the proposed D-STM
outperforms STM and archives a J&F score of 76.9% in
the 2020 DAVIS challenge on semi-supervised VOS.

2. Methods

2.1. Space-Time Memory Network

In this section, we briefly review the space-time mem-
ory (STM) network [10] that becomes the basic architec-
ture of our method. STM is composed of four compo-
nents, memory encoder, query encoder, space-time mem-
ory reader, and decoder. At time step t, the image
It is regarded as a query image while the past frames
[I0, . . . , It−1] and masks [M0, . . . ,Mt−1] are memories.
The key-value pair

{
kQt , v

Q
t

}
for time step t is encoded by

the query encoder. Similarly, the memory encoder gener-
ates

[{
kM0 , vM0

}
, . . . ,

{
kMt−1, v

M
t−1
}]

by encoding the past
frames and masks, where key is used for encoding seman-
tics for matching robust to appearance variations and value
stores detailed information for producing the mask estima-
tion. The space-time memory reader produces features ft
for It by combining the keys and values from memories,
which can be formulated as

ft =

[
vQt ,

1

Z

t−1∑
i=0

R(kQt , k
M
i )vMi

]
(1)
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Figure 1. Overview of D-STM. D-STM consists of two encoders for the memory and the query frame, a space-time memory read block,
and a decoder. The memory encoder takes an RGB frame, a depth map and the object mask. The query encoder takes the query image and
depth map as input.

where [·] denotes the concatenation operation , Z represents
the normalization factor, and R(·) is the correlation func-
tion to measure the similarity between the current frame and
memories. Formally,

Z =

t−1∑
i=0

R(kQt , k
M
i ) (2)

R(kQt , k
M
i ) = exp(kQt · kMi ) (3)

The ft is then fed into the decoder to obtain the final mask
of the current frame.

2.2. Depth-aware Space-Time Memory Network

Depth Estimation. Depth maps provide spatial locations
of all objects of a frame, which is helpful to alleviate the
ambiguity of objects with similar appearances. Moreover,
it provides an initial segmentation of an object. However,
recovering the dense depth maps from a video is challeng-
ing because the moving objects violate the epipolar con-
straint used in 3D vision, and are often treated as noise or
outliers in existing structure from motion (SfM) and multi-
view stereo (MVS) methods. To solve this problem, we fol-
low [7] to train a neural network on videos where people
imitate mannequins, i.e., freeze in elaborate, natural poses,
while a hand-held camera tours the scene. Once trained, the
network can handle natural videos with an arbitrary camera
and human motion. In D-STM, the backbone network (i.e.,
ResNeSt50) take the both RGB frame and depth maps as
input, as shown in Figure 1.
ResNeSt50. In D-STM, ResNeSt50 is adopted as the back-
bone in both memory encoder and query encoder. As dis-
cussed in [16], ResNet is originally designed for image

classification and may not be suitable for image segmen-
tation due to the limited receptive-field size and lack of
cross-channel interaction. In contrast, ResNeSt incorpo-
rates feature map split attention within the individual net-
work blocks. More specifically, each of blocks divides
the feature map into several groups (along the channel di-
mension) and finer-grained subgroups or splits, where the
feature representation of each group is determined by a
weighted combination of the representations of its splits
(with weights chosen based on the global contextual infor-
mation). Besides, ResNeSt requires no more computation
than existing ResNet-variants, and is easy to be adopted as
a backbone for other computer vision tasks.
ASPP. One of the major challenges in the segmentation is
caused by the existence of objects at multiple scales. To
solve this issue, we introduce ASPP [3] to probe an im-
age with multiple filters that have complementary effective
fields of view, thus capturing objects as well as useful image
context at multiple scales. Consequently, D-STM archives
better results in segmenting small objects.
Lovász Loss. Lovász Loss [2] is used to direct optimization
of the mean intersection-over-union loss in neural networks
in the context of VOS. Formally, the Lovász Loss can be
defined as

L(ŷ,y) =
1

|C|
∑
c∈C

∆Jc(ŷ,y) (4)

Let ŷ and y be the segmentation output and ground truth,
respectively. The set of mispredicted pixels Mc for class c
can be defined as

Mc(ŷ,y) = {y = c, ŷ 6= c} ∪ {y 6= c, ŷ = c} (5)
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Figure 2. The depth estimation and video object segmentation results on the DAVIS test-challenge set. Frames are sampled at important
moments (e.g., before and after occlusions).

Therefore, the Jaccard loss ∆Jc can be written as a func-
tion of the set of mispredictions

∆Jc : Mc ∈ {0, 1}p 7→
|Mc|

| {y = c} ∪Mc|
(6)

To use Jaccard loss in a a continuous optimization, the
Lovász extension of a set function ∆ : {0, 1}p → R such
that Delta(0) = 0 is defined by

∆ : m ∈ Rp 7→
p∑
i=1

migi(m) (7)

with

gi(m) = ∆({π1, . . . , πi})−∆({π1, . . . , πi−1}) (8)

where m is the a vector of pixel errors and π is a permuta-
tion ordering the components of m in decreasing order, i.e.,
xπ1
≥ xπ2

≥ xπp
.

3. Experiments
3.1. Implementation Details

We use a two-stage training strategy to train the D-
STM following [10]. Specifically, D-STM is firstly pre-

trained on a simulation datasets generated from several im-
age datasets, including MSRA10K [4], MSCOCO [8], and
PascalVOC [6]. After pretraining, D-STM is fed with real
videos for main training. Both videos from the DAVIS [12]
and YouTube-VOS [15] datasets are used in this stage. Par-
ticularly, we sample 3 temporally ordered frames from the
video during training. To learn the appearance change over
a long time, we randomly skip frames during the sampling.
The number of frames to skip is gradually increased from 0
to 25 during the training as in curriculum learning [1].

We randomly crop 384×384 patches from images for
training. The batch size is set to 12 using four NVIDIA
TITAN Xp GPUs. We adopt an Adam optimizer with a β1
of 0.9 and β2 of 0.999. The initial learning rate is set to
10−5 and decayed by 2 after 100 epochs. Both pretraining
and main training is set to stop after 150 epochs.

3.2. Evaluation on the DAVIS Benchmark

We evaluate D-STM on the 2020 DAVIS challenge on
semi-supervised VOS. The test-challenge set is composed
of 92 objects in 30 videos. The quantitative results are re-
ported in Table 1. Figure 2 shows estimated depth maps and
qualitative examples of D-STM and STM, which indicates
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Table 1. The semi-supervised video segmentation results on the
DAVIS test-challenge set. Our results are highlighted in bold.

# User J F J & F
1 pengzhang0x 0.815 0.867 0.841
2 captain 0.811 0.865 0.838
3 hongje 0.770 0.821 0.795
4 tmtriet 0.765 0.821 0.793
5 hzxie 0.744 0.795 0.769
6 vltanh 0.733 0.787 0.760
7 JingshanXu 0.722 0.777 0.750
8 littleboy 0.698 0.746 0.722
9 mingmingdiii 0.676 0.722 0.699

10 Mustansar 0.625 0.673 0.649

Table 2. The ablation studies for D-STM on the DAVIS validation
set. Note that Lovász denotes the Lovász Loss and TTA represents
the multi-scale ensemble during inference.

ResNeSt Lovász Depth ASPP TTA J&F
0.783

X 0.799
X X 0.805
X X X 0.813
X X X X 0.820
X X X X X 0.835

that D-STM performs better than STM in distinguishing ob-
jects with similar appearances.

3.3. Ablation Study

To demonstrate the effectiveness of the key components,
we conduct ablation studies for D-STM. As shown in Table
2, test-time augmentation (TTA) brings the largest improve-
ment in terms of J&F of 0.02. Removing either Depth,
ResNeSt, ASPP, or Lovász loss causes considerable degen-
eration in segmentation accuracy.

4. Conclusion
In this paper, we propose Depth-aware Space-Time

Memory (D-STM) network for semi-supervised video ob-
ject segmentation. The depth maps estimated from video
sequences alleviate the ambiguity of objects having similar
appearances. Together with ResNeSt, ASPP, Lovász Loss,
and the test-time augmentation, the proposed D-STM out-
performs STM [10] on the DAVIS benchmark and archives
a J&F score of 76.9% in the 2020 DAVIS challenge on
semi-supervised video object segmentation.
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