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Abstract

Semi-supervised video object segmentation (VOS) has
made a great progress in recent years. Although previous
works adapt abundant concepts (like memory and track-
ing) into VOS task, they deeply rely on the quality of im-
age feature extracted by ResNet or Deeplab. In this paper,
we carry out an investigation on the selection of extrac-
tor backbones, and propose a novel multi-level backbone
to generate much higher spatial resolution representations.
The core idea of the multi-level backbone is the usage of
an “up-and-down” structure, which repeats “down” and
“up” sampling steps to enable high spatial resolution. To
avoid information losing, we propose to aggregate features
across different levels to strengthen the information flow.
Such structure can be easily adapted into any traditional
backbone like ResNet. We find that this backbone is suitable
for VOS task as it can generate much fine-grained represen-
tation, and bring the improvement of 2-3 points compared
to traditional backbones on DAVIS dataset. We evaluate the
improved backbone with a memory network on the DAVIS
2020 test-challenge set and achieve the J&F mean score
of 72.2%.

1. Introduction

Semi-supervised video object segmentation (VOS) aims
to segment one or more interested objects from background
in a video according to the ground-truth pixels of the given
objects in the first frame. Earlier methods such as [1, 14]
achieve target adaption by fine-tuning a deep neural net-
work on the first frame. Recently, instead of training
deep models with multiple tricks, more and more meth-
ods [10, 15, 18] adapt abundant concepts (like memory
and tracking) into VOS task and achieve significant perfor-
mances. However, they deeply rely on the quality of image
feature extracted by traditional backbone like ResNet. No
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Figure 1. Comparison of the features extracted by different back-
bones, where ours provides more boundary details.

matter what the features were used for (for distance match-
ing or correlation), a higher resolution feature can provide
more precisely details for accurate segmentation.

In this paper, we aims to develop an effective backbone
to generate higher resolution features for VOS task. As
up sampling [2] and deconvolution [16, 13, 19] are gen-
erally appended after the backbone networks to increase
the spatial resolution of deep features, we combine such
”up” and ”down” stream a a ”up-and-down” block, and
repeat this ”up-and-down” block to build our final multi-
level backbone. Specifically, each level is a simple light-
weight network and contains its own down sampling and
up sampling path. The feature maps between the levels re-
main a high resolution. To avoid information losing dur-
ing the down and up steps, we aggregate the feature maps
across different levels to strengthen the final information
flow. Such multi-level structure enables high spatial resolu-
tion and can be adapted to any traditional backbone. Figure
1 shows the comparison on feature resolution of different
backbones, and our multi-level backbone provides more ac-
curate boundary details. We evaluate our backbone with a
memory network on the DAVIS 2020 test-challenge set and
achieve a the J&F mean score of 72.2%. Ablation study
is also carried out on DAVIS dataset.

2. Multi-level Backbone
We illustrate our multi-level backbone in Figure 2. For

each ”down and up” block, it has its own down and up sam-
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Figure 2. Overview of our proposed multi-level backbone. It is composed of multiple ”down and up” blocks which enable higher spatial
resolution. A cross level aggregation strategy (red line) is adopted between adjacent stages. (Best view in color)

pling path, where the down sampling is the same to the tra-
ditional backbone. We repeat such block multiple times to
build the multi-level backbone. As this equal-channel-width
design results in a relatively poor performance since a lot of
information will be lost after every down sampling. It is
reasonable since we aim to extract more representative fea-
tures in the down sampling process and the lost information
can hardly be recovered in the up sampling. To this end,
we introduce a aggregation strategy to strengthen the infor-
mation flow for increasing the capacity of down sampling
unit.

2.1. "Down and Up" Block

At down sampling path, we follow the down sampling
strategy of traditional backbone to embed the image into
different scales. At up sampling path, we upsample the em-
beded features with bilinear interpolation. To keep previous
low-dimension features with the same scale, we add them
directly and send it to the next upsample layer.

2.2. Cross-level Feature Aggregation

As our multi-level structure is vulnerable by the infor-
mation losing during repeated up and down sampling. To
mitigate this issue, we propose a cross level feature aggre-
gation strategy to propagate multi-level features from earlier
levels to current one for strengthening.

As shown in Figure 2, for each scale unit of current down
sampling procedure, two separate information flows (red
lines) are introduced from down and up sampling units in
the previous level by additional 1 × 1 convolution layers.

With this design, the current level can take full advantage
of prior information to extract more discriminative features.

3. Experiments
In this section, we evaluate ResNet50 based multi-level

backbone with a memory network.

3.1. Dataset and Evaluation Metrics

We evaluate our models on DAVIS 2017 test-dev set
and DAVIS 2020 test-challenge set, with mean intersection-
over-union (J ), mean contour accuracy (F) and their global
mean value (G).

3.2. Training Procedure

The model is first pre-trained on a simulation dataset
generated from static image data (Pascal VOS [4, 5], COCO
[9], MSRA10K [12], ESCCD [3]), and then trained for real-
world videos through the main training. For fine-tuning, we
apply random translation and scaling on the first frame with
lucid augmentation [7].

3.3. Implemental Details

We implement our multi-level backbone based on
ResNet50 with a memory network [10] in Pytorch [11].For
the training, we adopt Adam [8] optimizer with learning
rate 1e − 5 for pre-training and 5e − 6 for main-training
and fine-tuning. The input size for the network is made to a
fixed 384×384, and we use cross-entropy loss function. All
the experiments are conducted on 4V100 GPUs on a server,
where the batch size is set to 4 on each GPU.
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Figure 3. Qualitative examples of our method on DAVIS 2020 test-challenge set, where the images are sampled at the average intervals for
each video. From top to bottom, the sequences are ”boxing”, ”choreography”, ”e-bike”, ”kids-turning”, and ”running” on the DAVIS2020
test-challenge set. Different objects are highlighted as different colors..

3.4. Analysis

We first investigate the performances of different training
strategies. Details are shown in Table 1. It suggests that pre-
training is necessary for this network, and YouTube-VOS
[17] dataset can help the model converge to a better feature
space.

We also investigate the performances of different back-
bones. As shown in Table 2, we first compare the results
between ResNet50 [6] and ResNest50 [20], and find that
ResNet50 performs better. We apply multi-level structure
on ResNet50, and the result shows that it has 2.8% improve-
ment with the help of the multi-level structure.

At last, we shows the tricks we used in DAVIS challenge
2020 in Table 3. We finetune the full-trained model on each
object of a video with lucid [7] augmentation. This step
boosts most with improvement of 4.1%. As we find that dif-
ferent model has different performances on different videos,
we ensemble the full-trained model, pre-trained model and
finetuned model to generate the final segmentation results.

3.5. Qualitative Results

Qualitative results are shown in Figure 3. We can find
that our multi-level backbone provides better boundary de-
tails for segmentation, and it is robustness for object miss-
ing and occlusion.

Table 1. The results of Pre-training, Main-training and
Full-training with ResNet50 based Multi-level backbone on
DAVIS2017 test-dev set.

Training Method G Mean J Mean F Mean
Pre-training only 61.3 59.4 63.3

(with YouTube-VOS) 63.4 60.9 65.9
(with Main-training) 61.9 60.0 63.7
Main-training only 55.5 54.3 56.6

Full-training 66.7 64.4 69.0

Table 2. The results of different backbones without finetuning on
DAVIS2017 test-dev set.

Backbone G Mean J Mean F Mean
ResNest50 63.9 61.8 66.0
ResNet50 64.4 62.8 66.1

Multi-level+ResNet50 66.7 64.4 69.0

Table 3. The results on DAVIS2020 test-challenge set.
Method boost G Mean J Mean F Mean

Full-training - 66.4 63.8 69.0
+ finetuning 4.1 70.5 68.0 72.9
+ ensemble 1.7 72.2 69.8 74.6
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4. Conclusion
In this work, we investigate the quality of the traditional

backbone in VOS task. We find that higher quality of im-
age feature can provide better guiding clues for the final
segmentation. To this end, we develop an effective multi-
level backbone to generate higher spatial resolution fea-
tures. This structure is suitable for VOS and bring about
2-3 points improvement. Moreover, it can be easily adapted
to any traditional backbone for future work. We achieve the
J&F mean score of 72.2% on DAVIS challenge 2020.
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