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Abstract

In this work, we focus on semi-supervised Video Object
Segmentation (VOS) problem, where an object mask is pro-
vided in the initial frame and VOS algorithm has to seg-
ment that object in the rest of the video frames. VOS is a
challenging task due to object appearance variations, illu-
mination changes, occlusion, background clutter and vari-
ous distractions. Many online VOS methods have been pro-
posed however, most of these methods limit their real-world
applications due to computationally expensive online fine-
tuning. On the contrary, many cost efficient template-based
and propagation-based approaches suffer from degraded
performance due to object appearance drifts. In order to
tackle those issues, we propose a guided feature learning
with directional deep appearance learning for VOS. First,
we introduce guided feature modulation to capture the video
context information based on target mask. Secondly, a di-
rectional matching module is utilized to learn pixel-wise se-
mantic embedding. Third, a directional appearance model
is integrated to represent the target and the background
cues on a spherical embedding space. Finally, we propose
a guided pooling decoder to learn the global and the lo-
cal context information during refinement. The proposed
network is trained offline and does not require fine-tuning.
Our algorithm achieved an overall J and F score of 64.9 on
the DAVIS 2020 test-challenge data and 60.9 on the DAVIS
2020 test-dev dataset.

1. Introduction

Video Object Segmentation is a labeling task to segment
the specific target objects from the background in every
frame of a sequence. VOS is an expanding research field
due to wide range of applications such as video summariz-
ing, video understanding, video editing, and action recog-
nition. In this work, we handle VOS in a semi-supervised
manner, where the groundtruth mask of target objects are
provided in the initial frame and objective is to segment

the target from backgrounds in the rest of the frames [7].
VOS is a challenging problem as target objects change their
appearances dramatically due to occlusion and background
distractors.

In the past decade, various VOS algorithms have been
proposed to handle aforementioned challenges to fine-tune
the model parameters to learn target appearances. This
strategy has largely limited real-world applications due to
slow speed [1, 2, 11]. In contrast, template matching
and propagation-based strategies avoid online optimization.
These approaches may suffer from mismatching problem
due to temporal consistency and drift issue due to back-
ground disctractors [4, 13]. Many fine-tuning-free VOS al-
gorithms have been proposed to learn pixel-wise embedding
learning in Euclidean space [6, 5, 10]. These approaches
require high-computation because of similarity matching in
Euclidean space. During feature refinement, the decoder of
VOS algorithm may also lose contextual information due to
upsampling or convolutional layers [9].

In this work, we propose a network architecture to effi-
ciently learn the guided feature information in a encoder-
decoder architecture. We introduce a guided feature mod-
ulation module to learn guided feature information for bet-
ter discrimination by benefiting from modulation activation.
We utilize a pixel-wise semantic embedding to learn static
target/background cues by utilizing a global directional
matching module. On the contrary to AGAME [6], our di-
rectional generative appearance model efficiently learns dy-
namic target/background cues from the subsequent frames
on a spherical embedding. Proposed directional appear-
ance module estimates strong discriminative cues in a sin-
gle forward pass to avoid online learning. We also propose
a guided pooled decoder to learn global and local contex-
tual information during feature refinement. Proposed VOS
framework is differentiable and is trained in an end-to-end
offline learning manner. We evaluate our VOS over DAVIS
2020 test-challenge and test-dev datasets.
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Figure 1. The illustration of proposed video object segmentation framework. The extracted features and resized mask from the first
frame are forwarded to Guided Feature Modulation Module (GFMM), Global Directional Matching Module (GAMM), and Directional
Appearance Module (DAM). During inference, features from the current frame are forwarded to GFMM, GDMM, and DAM. The outputs
from these modules are combined in merge module and passed to coarse predictor to estimate the coarse segmentation encoding. This
coarse encoding is feeded back to GFMM and DAM for next frame segmentation estimation. The merge module output with shallow
features are forwarded to Guided Pooled Decoded (GPD) for refinement and to produce final segmentation result.

2. Proposed Method
This work aims to propose a model update free VOS al-

gorithm by learning the guided context features, static pixel-
wise semantic embedding from the first frame, dynamic tar-
get/background cues from subsequent frames, and guided
pooled decoder in one-shot learning. Similar to DDEAL
[14], our VOS framework is composed of feature extrac-
tion, Guided Feature Modulation Module (GFMM), Global
Directional Matching Module (GDM), dynamic Directional
Appearance Module (DAM) module, merge module, coarse
predictor, and Guided Pooled Decoder (GPD) module as
shown in Fig. 1. Our feature extractor ResNet extracts fea-
tures from the first frame and input frame, and forward to
GFMM, GDMM, and DAM. The initial mask from the first
frame is resized and also forwarded to these modules. The
outputs from aforementioned modules are concatenated and
fused using two convolutional layers in merge module and
forwarded to coarse predictor which has one convolutional
layer to estimate coarse segmentation mask. This coarse
segmentation mask is re-used in the next frame by GFMM
and DAM. The output from merge module along with shal-
low features are also fed to GPD to estimate the final seg-
mentation.

2.1. Guided Feature Modulation Module(GFMM)

The objective of GFMM is to learn the video context in-
formation in a modulation activation manner. GFMM learns
guided feature information such that it preserves the seman-
tic information. Proposed GFMM architecture is shown
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Figure 2. The illustration of Guided Feature Modulation Module
(GFMM) on right and guided Feature Modulation Block (FMB)
on left.

in Fig. 2. Out GFMM takes object masks from first and
previous frame, and extracted features at frame one and t.
The object masks and feature are forwarded to guided Fea-
ture Modulation Block (FMB) which returns guided fea-
tures. The object masks are forwarded to convolutional lay-
ers to construct α and β. The input features are normal-
ized and element-wise multiplied with α and element-wise
added with β in a modulation manner. The outputs from
FMB blocks and masks from first and previous frames are
concatenated and forwarded to merge module after convo-
lutional layer to reduce the channels.

2.2. Global Directional Matching Module (GDMM)

Our GDMM learns static cues in a directional embed-
ding manner from first frame by directional feature match-



ing. Similar to DDEAL [14], GDMM performs matching in
spherical embedding space by computing cosine similarity
between the directional features from first frame and current
frame. Let F 0 ∈ R1xCxHxW be the features extracted from
first frame are the directional feature vectors in sphere. Sup-
pose M0 ∈ R1x1xHxW is the resized target mask from first
frame. The target kernel vectors Thw,c,1 and background
kernel vectors Bhw,c,1 are computed as:

Thw,c,1 =M0
1,1,h,w.F

0
1,c,h,w,

Bhw,c,1 = (1−M0
1,1,h,w).F

0
1,c,h,w.

(1)

Each kernel vector in Thw,c,1 and Bhw,c,1 represents the
weighted feature for each position in F 0. The target cosine
distance P1,k,h,w between F t and Thw,c,1 is computed as:

P1,hw,h,w =

C∑
c=1

(F t1,c,h,w.T
hw
hw,c,1,1), P ∈ R1xHWxHxW .

(2)
Similarly, background cosine distance Q1,hw,h,w is calcu-
lated. Finally, the global directional matching p1,1,H,W
and q1,1,H,W is achieved by maximizing P1,HW,H,W and
Q1,HW,H,W respectively.

2.3. Dynamic Directional Appearance Module
(DAM) module

Our dynamic DAM module is based on von Mises-Fisher
(vMF) directional appearance model to estimate the tar-
get/background cues in a spherical embedding space. Our
directional appearance model returns the posterior class
probabilities for target/background for discrimination and
updates for each frame. Our DDAM structure is close
to DDEAL [14]. Let g be the directional vectors, the
vMF distribution of a (p-1) dimensional sphere in Rp with
L2 − norm is fp(g;µ, κ) = ( κp/2−1

(2π)p/2Ip/2−1(κ)
)exp(κµT g),

where ‖µ‖ =1, κ ≥ 0, and Iv be the Bessel function of p
dimensionality with order v.

The directional vectors gl are extracted from features
maps F from the current frame at spatial location l. Each
class-conditional density with µ and κ for vMF distribution
is p(gl|zl = k) = fp(gl;µk, κk). The directional variable
gl is assigned to a discrete component zl = k. In prac-
tice, we employed four model components i.e, 1 and 3 for
directional target features while 0 and 3 are used for direc-
tional background features. The base components are com-
puted from the masks from first frame while supplementary
components are computed from previous estimated masks.
The κ parameter is a trainable parameter in our model.
The parameter µ is estimated by maximum likelihood as
µik =

∑
l α

i
lg

i
l

‖∑l α
i
lg

i
l‖

, where αil,k ∈ {0, 1} be i − th soft-label

to assign directional feature gil to a specific component k.
The parameter µik is linearly updated with learning rate λ as
µik = (1− λ)µi−1

k + λµik.
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Figure 3. Illustration of proposed Guided Pooled Decoder (GPD).
Low-level features are merged using global guide along with Di-
lated Feature Aggregation (DFA) to obtain high-level features.
Foreground maps from first frame and previous frames are also
combined during feature refinement. Finally, features are fed to
predictor to estimate the final estimation. The final output is ob-
tained by upsampling.

2.4. Guided Pooled Decoder (GPD) module

We propose a GPD is to generate high-resolution feature
maps by capturing global and local context information.
Proposed GPD explicitly preserve the salient object features
at different layers and global target information from the in-
put feature maps during refinement. We intend to provide a
global guidance information throughout the feature refine-
ment process from coarse-level to fine-grained level. For
that, we introduce global guide along with a global flow
to deliver the high-level semantic information at different
layers (as illustrated in Fig. 3). We also introduce a Di-
lated Feature Aggregation (DFA) module, similar to [3],
that merges the features extracted with different dilation
rates.

3. Experiments
3.1. Network Training Details

We implemented the proposed framework in PyTorch
by utilizing ResNet101 as backbone feature extractor, pre-
trained on ImageNet benchmark for object classification
task. The model is end-to-end trainable based on a single
ground-truth mask from the first frame and n − th frame
from a sequence. The model has to estimate the segmenta-
tion mask for the n − th frame. We apply cross-entropy
loss function to compute the final segmentation loss and
auxiliary loss for coarse segmentation. We trained our
network in two stages. In stage one, we set input image
size to 240 × 432 which are normalized by computing the
mean and the standard deviation. We set batch size of 8
with 12 frames from a video and trained for 120 epochs.
During stage two, we used original input image size and
set batch size 4 with 8 frames. We optimize our model



for 100 epochs using Adam optimizer by adding losses.
The initial learning rate is 10−5 and it decreases exponen-
tially till 10−2 with weight decay 10−5. We trained our
model over DAVIS2017-train [8] and YouTube-VOS-train
[12] datasets.

3.1.1 Results on DAVIS 2020 Challenge

We used three measure parameters such as region similar-
ity (J), contour accuracy (F), and global score (G) [7] to
evaluate our VOS method. We achieved 57.9%, 63.9%, and
60.9% on DAVIS 2020 test-Dev in terms of J, F, and G.
We also evaluate our on DAVIS 2020 test-Challenge and
secured 8-th position. Our approach secured 72.1, 67.3, and
64.9 scores in terms of J, F, and G respectively. Our VOS
performs segmentation at 0.06 seconds per frame on DAVIS
2020 test-Challenge dataset.

We perform ablation study over DAVIS 2020 test-dev
to validate the proposed GFMM, GDMM, DAM, and DFA
modules. The J, F, and G scores are shown in Table. 1.

Table 1. Ablation study performed over DAVIS 2020 test-Dev
dataset.

Variants J-mean F-mean G-mean
Ours-without GFM 55.4 61.4 58.4
Ours-without GDM 55.3 60.8 58.0
Ours-without DAM 54.1 58.7 56.7
Ours-without GPD 56.3 61.9 59.1

Ours 57.9 63.9 60.9

4. Conclusions
We propose a VOS algorithm to segment targets from

backgrounds without model update. Proposed GDMM
learns semantic information in a modulation manner from
each frame. GDMM matches the semantic information
from first frame for each frame. DAM gives the strong cues
for mask estimation. Global guided pooled decoder cap-
tures both the global and local context information during
refinement. Our method achieved an overall score 64.9 on
DAVIS 2020 test-Challenge dataset at 0.06 seconds/frame.
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