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Abstract

This paper addresses the task of unsupervised multi-
object video segmentation. Most current approaches cast
the task as a re-identification solution, which associates ob-
jects across frames by generic feature matching. However,
the generic features are not reliable for characterizing un-
seen objects, leading to poor generalization. To address
this, we complement current video object segmentation ar-
chitectures with a discriminative appearance model, capa-
ble of capturing more fine-grained target-specific informa-
tion. Given object proposals from off-the-shelf detectors,
three essential strategies are adopted to achieve accurate
segmentation: 1) Target-specific tracking. Each determined
target is sequentially tracked using a memory-augmented
appearance model, wherein the memory stores historical
information for re-training the appearance model online;
2) Target-agnostic verification. The tracked segments and
object proposals are backward re-identified to trace possi-
ble tracklets. Departing from the tradition of only matching
proposals between adjacency frames, we conduct long-term
semantic matching among distant proposals. This helps to
correct the inaccurate tracked segments or drifted results;
3) Adaptive memory updating. Memories are adaptively up-
dated using the verified segments, instead of using tracked
results all the time. This favors storing high-quality tar-
get information in the memory, reducing the risk for model
drifting. By these carefully designs, our approach obtains
state-of-the-art performance on DAVIS20 test-dev set
(J&F: 59.8%) with a fast speed (15 FPS). It finally ranked
2rd place in the DAVIS20 Unsupervised Segmentation Chal-
lenge (test-challenge set).

1. Introduction

Unsupervised video object segmentation targets at auto-
matically separating primary objects from the background
in dynamic videos [16]. The task has gained signifi-
cant attention in recent years, due to its potential ben-
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Figure 1: Pipeline of the proposed method, which consists of
three components: target-specific tracking, target-agnonistic veri-
fication and adaptive memory updating.

efits for a wide variety of applications, e.g., embodied
question answering [9], human-object interaction recogni-
tion [10, 21]. Extensive research efforts have been de-
voted to learning discriminative video object patterns, by
leveraging motion cues[13], addressing spatiotemporal fea-
tures [14, 4], or using recurrent networks [12, 17] to cap-
ture sequential information. Though impressive results
have been generally achieved, these approaches focus on
foreground/background separation, which are limited in
instance-aware scenarios.

Video object instance segmentation is more challenging
as it requires not only discovering foreground regions auto-
matically, but also discriminating different object instances
and associating instance identities across frames[1]. To ad-
dress instance discrimination, image instance segmentation
techniques [2] are typically applied to each single frame
to generate object proposals. Then, for cross-frame iden-
tity association, matching based proposal re-identification
(ReID) [8] is a nature choice. However, above two-stage
paradigm easily suffers from two limitations. First, the ro-
bustness is limited. ReID networks, trained completely of-
fline, focus more on general object appearance, while rarely
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capturing fine-grained distinctive features of specific tar-
gets. Second, large amounts of data are typically needed to
train the image instance segmentation and ReID modules.

In this work, we address these problems by learning ro-
bust target-specific appearance for segmentation. Inspired
by [11], we utilize a light-weight discriminative appear-
ance model to generate target-specific segmentation scores
during inference. The segmentation scores then serve as
guidance to achieve accurate segmentation via a boundary-
aware refinement network, which is offline trained. Note
that the appearance model is more prone to drift due to the
lack of ground-truth annotations. Therefore, we further pro-
pose a target-agnostic backward verification module to ex-
amine the tracking results. The verified results are used as
new training samples to update the appearance model on-
line. The pipeline of our algorithm is depicted in Fig. 1.

With above efforts, our algorithm achieves state-of-the-
art results in DAVIS20 test-dev benchmark with a score
of 59.8% in terms of Mean J&F . It finally ranked 2rd place
in DAVIS20 test-challenge. Besides, our method is
efficient (15 FPS) and operates without any additional post-
processing (e.g., CRF).

2. Related Work
Unsupervised Video Object Segmentation (UVOS).
UVOS aims to segment conspicuous video objects without
any test-time human intervention. Most current research ef-
forts focused on segmenting all primary objects together.
These methods avoid the dilemma of data association, and
pay more attention to enrich object representations for au-
tomatic object discovery. Specifically, they learned motion
patterns to separate independent objects and camera mo-
tion[13], mined high-order contextual relationships among
video frames[7, 15, 19], or exploited two-stream neural net-
works [4, 20]. However, in the instance-level multi-object
setting, the main challenge becomes how to associate differ-
ent objects across frames. Recent leading approaches[6, 8]
solved this by feature matching based ReID. Though im-
pressive, they suffer from the limited representability of
generic features in characterizing specific objects, which
poses great difficulties for distinguishing similar objects.
In contrast, we propose to learn target-specific features for
robust instance tracking, and introduce a global matching
strategy to improve the tracking results.
Discrimintive Appearance Models. Appearance models
have been widely explored in online visual tracking[3, 11]
to capture target object appearance. Some recent efforts dis-
criminatively learn convolution filters using efficient opti-
mization (e.g., Conjugate Gradient[3], Gauss-Newton[11])
to distinguish target from background. In this work, with
a similar spirit of [11], we build a target-specific appear-
ance model and adapt it into our instance-level unsupervised
video object segmentation scenario.

3. Our Algorithm
Preliminary. Given a video sequence I, the goal of un-
supervised segmentation is to automatically generate a col-
lection of non-overlapping segment tracks. To achieve this,
our method automatically determines each important object
instance and learns a discriminative appearance model to
track it. Specifically, for each frame, we employ HTC[2] to
generate a set of category-agnostic object proposals. In con-
trast to previous approaches that score the proposals only
using detection confidence, we rescore them by incorpo-
rating motion-aware saliency information[20], encouraging
the model to discover salient but low-confidence objects.
The final score of each segment proposal is the summa-
tion of its detection confidence and saliency value. Those
proposals with scores smaller than a pre-defined thresh-
old thprop are directly discarded. The remaining propos-
als in the first frame are treated as the initial tracking tar-
gets, and our method is capable of discovering newly ap-
pearing objects during tracking. Next, we describe our
method in detail, which is mainly equipped with four
components/techniques, i.e., target-specific tracking, target-
agnostic verification, adaptive memory updating, and a seg-
mentation network.
Target-specific tracking. For each target, we build a target-
specific appearance model to discriminate the target from
background distractors. To this end, we instantiate the
model with a two-layer fully convolutional network [11],
i.e.,D(x;w) = w2∗(w1∗x), where x is the image features
of frame I ∈ I and w denotes network parameters. Given
training samplesM = {(xj ,yj , αj)}j , the network can be
online learned by minimizing the objective:

L(w;M)=
∑

j
αj‖D(xj ;w)− yj‖2 +

∑
k
λk‖wk‖2, (1)

where yj denotes the target label of xj and αj is the cor-
responding sampling weight. The parameters λ control the
regularization term. Note that the training sample set M,
or memory, is significant for model learning, especially for
the unsupervised setting. In contrast to the semi-supervised
setting, no ground-truth y0 is available for model training at
the beginning; hence, the model is more prone to drifting.
To address this, in our method, for each target, its segment
proposal from HTC serves as the pseudo ground-truth la-
bel ỹ0, and we augment it heavily to train the initial model.
Different from [11] that regularly updates the memory us-
ing tracking results, we design heuristic strategies for online
tracking verification and adaptive memory updating. These
strategies help to alleviate the negative effects introduced by
the noises in ỹ0, and greatly boost the performance.
Target-agnostic verification. Let ỹj and T denote the
tracking result of a target at frame Ij and its correspond-
ing tracklet, respectively. We aim to verify the consistency
between ỹj and T , as well as find possible better candidate
from the object proposal set. This is achieved by match-



ing the object proposals in the current frame with historical
tracking results. To promote the reliablity of verification,
we conduct the matching in a target-agnostic manner, using
a ReID network[8]. For each object proposal o, its match-
ing score with T is computed as:
s(o, T )=(cos(o, ỹj)+cos(o, ỹ0))∗1(IoU(o, ỹj) > 0.5), (2)

where cos indicates the cosine similarity between two
ReID embeddings, IoU denotes intersection-over-union,
and 1(·) ∈ {0, 1} is the indicator function. Here, we first
examine the overlap between o with ỹj , which is used to
truncate the ReID similarities. For more reliable matching,
we compare o with the most recent and the most distant
tracking results, i.e., ỹj and ỹ0. This facilitates our model to
capture long-term semantic consistency. Based on Eq. (2),
we find the proposal with the highest score s̃ with T . If s̃
is above a threshold threid, we replace the current tracking
result ỹj with the corresponding proposal; otherwise, we
keep ỹj unchanged. Besides, we discover new targets if the
corresponding proposals have zero matching scores with all
existing tracklets as well as small IoUs (<0.1) with tracking
results in the current frame.
Adaptive memory updating. Once the tracking result ỹj is
verified, we determine to adaptively update the memory us-
ing the new sample {xj , ỹj , αj}. The sample is first given
a weight αj = (1 − η)−1αj−1, where α0 = η. Besides, if
s̃ > threid, we double the corresponding weight αj so that
the model can put more emphasis on relible object propos-
als. All the weights are then normalized to unity. During
inference, if s̃>threid, we intermediately update the appear-
ance model at the frame; otherwise, we update the model
every 8 frames.
Segmentation Network. The appearance model produces
a coarse segmentation output u=D(x;w). It is then passed
to a segmentation network S to obtain a high-resolution
segmentation. Our segmentation network consists of two
modules: 1) a target segmentation encoder[11] that merges
the segmentation scores with backbone features; and 2) a
boundary-aware refinement module [20] to produce accu-
rate segmentation with crisp boundaries.

4. Experiments
Our approach is evaluated on DAVIS20 test-dev and

test-challenge, each containing 30 challenging se-
quences. Ablative experiments are conducted on DAVIS20

test-dev.
Detailed Network Architecture. We use ResNet-101[5] as
the backbone network of the appearance model D and the
segmentation network S. D accepts features from Res4 to
produce a 1-channel coarse score map[11], while S accepts
multi-scale features from Res2 to Res5, and progressively
merges high-level abstract features with low-level details.
The segmentation network S is offline trained on a com-
bination of DAVIS20 and Youtube-VOS[18] train splits.

Team J&F Mean J Mean J Recall F Mean F Recall
Phoenix 61.6 58.4 65.0 64.7 71.1

IIAI 55.6 53.1 60.0 58.2 62.5
BLIIT 52.3 50.2 57.5 54.4 58.9

HCMUS 43.9 40.2 45.7 47.5 50.1

Table 1: Segmentation results on DAVIS20 test-challenge
set (Higher values are better). The two best scores for each metric
are marked in red and blue, respectively.

Team J&F Mean J Mean J Recall F Mean F Recall
IIAI 59.8 56.0 65.1 63.7 68.4

Phoenix 57.9 52.9 60.4 63.0 69.5
BLIIT 54.4 51.4 59.9 57.4 61.6

sabarim 48.6 43.9 48.0 53.3 58.2
BUAA 46.2 41.2 46.4 51.2 57.0

Table 2: Segmentation results on DAVIS20 test-dev set
(Higher values are better). The two best scores for each metric
are marked in red and blue, respectively.

Variant J&F Mean J Mean J Recall F Mean F Recall
Full Model 59.8 56.0 65.1 63.7 68.4

w/o. target verification 54.2 50.0 57.2 58.3 62.3
w/o. memory updating 56.0 51.8 59.7 60.2 64.3
w/o. saliency rescoring 58.9 53.9 61.3 62.0 67.6

Table 3: Ablation study on DAVIS20 test-dev set.

The ReID model in [8] is used to compute embeddings for
object proposals. We set thprop = 0.3 and threid = 0.8 in
all the experiments. Our model is implemented in PyTorch,
and trained on eight NVIDIA Tesla V100 GPUs.
Results on DAVIS20 Challenge. Table 1 and Table 2
summarize the results of top teams in test-challenge
and test-dev benchmarks, respectively. Our approach
(IIAI) achieves state-of-the-art results on test-dev with
59.8% in terms ofJ&F Mean.Finally, our method ranks the
2rd place in test-challenge. Fig. 2 shows qualitative
results of representative sequences in test-challenge.
We can observe that our approach handles well various dif-
ficulties, e.g., object deformation, scale variations, etc.
Ablation Study. We further study the impacts of essential
components. As seen from Table 3, target-agnostic verifica-
tion and adaptive memory updating provide substantial per-
formance gains. Proposal rescoring also consistently boosts
performance over all metrics.

5. Conclusion
This work introduces a new target-aware adaptive track-

ing approach for automatic segmentation of multiple object
instances in videos. It demonstrates superior performance
on the DAVIS20 challenge. The contributions of essential
components are examined in the ablation study.
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Figure 2: Our results on DAVIS20 test-challenge. From top to bottom: dribbling, monster-trucks, surfer and table-tennis.
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